Домашняя яхт-верфь.

Сайт создан для тех, кто мечтает построить яхту своими руками — яхту своей мечты…

Печальное открытие. Снова о стеклопластике.

dscn0744 - 001 - 00

По просьбе читателей мы стараемся давать зеленую улицу любым (к сожалению, редким) конкретным сведениям о конструкции и технологии изготовления современных малых судов за рубежом (см., например, “Американский катер — а что внутри?” в “КиЯ” № 183). Поэтому острый критический материал под полным названием “Печальное открытие, или «Выпускаются ли еще стеклопластиковые суда?», опубликованный на сайте “Агентства Д. Паскоэнд Ко”, сразу же привлек внимание наших специалистов.

Предлагая вашему вниманию сокращенный его перевод, подчеркнем, что меньше всего хотели подорвать доверие читателей к стеклопластику и “усовершенствованным композитам”, как и к продукции ведущих специализированных фирм. Тем более, что нам неизвестно их мнение по поводу причин поломок, осмотренных сюрвейером Дэвидом Паско.

Однако отметим, что он известен в США как авторитетный автор 150 статей в технических журналах и нескольких книг, в том числе таких, как “Обследование стеклопластиковых моторных яхт” (2001 г.) и “Справочник покупателя лодки с подвесным мотором” (2002 г.). Продукция наших специализированных судостроительных центров, накопивших немалый опыт постройки стеклопластиковых судов всех размерений — от картопмини до серийных 320тонных тральщиков, считается достаточно надежной.

В последнее время возникло немало мелких производств, в том числе и таких, о качестве продукции которых трудно сказать что — нибудь определенное. Еще сложнее оценить работу самодеятельных судостроителей — любителей, пользующихся случайными материалами, не имеющих нужного опыта и надлежащих условий. Обратить их внимание на первостепенную важность вопросов контроля качества — такова цель этой публикации.

Над ФортЛодердейлом в прошлом году пронеслись два небольших урагана и один тропический шторм, повредившие лодки беспечных владельцев. Эти суда попали на распродажу, в связи с чем я их и осматривал. Многие из них выглядели так, будто — их в открытом море застиг свирепый ураган Эндрю, а вовсе не шторм со скоростью ветра около 12 м/с. Читать далее

27.08.2015 Posted by | стеклопластик | , , , , | Оставьте комментарий

«Дистанция» огромного размера…

00 - 002222

…пролегла между появлением новой яхты “Distancia 60”, построенной немецкой фирмой “Innovative Yacht GmbH”, и первыми неуклюжими попытками создать парусную яхту с варьируемой геометрией киля. О необходимости радикального изменения плавникового киля как жестко закрепленной конструкции постоянной  формы проектировщики заговорили уже давно — еще в начале 70х гг. прошлого века появились океанские гоночные яхты с отклоняемым закрылком на кормовой кромке киля, который способствовал значительному снижению дрейфа на острых курсах.

Увы, очередная редакция Правил IOR быстро перечеркнула полезное нововведение, введя огромный штраф за наличие такого закрылка. На некоторое время наступило затишье… Следующим всплеском практического интереса к новым конструкциям килей можно считать появление на дистанции гонок на “Кубок Америки” яхты “Australia II” с необычной крыльевой системой на бульбе плавника. Развитая система горизонтальных гидродинамических поверхностей, рассчитанная под конкретные волноветровые условия кубковой дистанции, оказалась той победной “изюминкой”, которой не было у американских яхтсменов.

С той поры крыльевая система на плавнике стала неотъемлемой частью не только кубковых яхт, но и вполне обычных крейсеров наподобие “Hunter 30” (см. “КиЯ” № 181). Очередной этап развития килевого комплекса океанских яхт наступил с появлением и стремительным совершенствованием открытых классов яхт (“Open 60”, “50” и др.). Отклоняющиеся при помощи гидравлических устройств кили стали довольно распространенной деталью многих лодок подобного типа.

Однако наряду с неоспоримыми достоинствами они имели и два ощутимых недостатка. В неразрешимое противоречие, во — первых, входили стремление увеличить восстанавливающий момент, переместив балластный бульб киля на ветер, и желание увеличить противодействующую дрейфу подъемную силу на киле, для чего последний требовалось держать по возможности ближе к вертикальной плоскости. Читать далее

25.08.2015 Posted by | Обзор яхт. | , , , , , | Оставьте комментарий

Друг судовладельца – дефектоскоп.

00-00123

Полувековой опыт пластикового судостроения не дал однозначного ответа на вопрос, как отформовать корпус, чтобы не иметь с ним проблем на протяжении всего срока эксплуатации. Нам не хватает осознанного опыта владения корпусами, изготовленными с теми или иными технологическими особенностями, понимания их пригодности в конкретных условиях эксплуатации, что послужило бы основой для принятия решения при покупке нового либо бывшего в эксплуатации судна.

Предлагаемое рассуждение на тему качества стеклопластиковых корпусов наверняка даст полезную информацию для этого.

Ничто не вечно

Во всем мире из стеклопластика изготавливают преобладающую по сравнению с прочими материалами часть промышленных катеров и яхт. Но данных, надежно связывающих тип исходных материалов для производства композитов и геометрические параметры конструкции с ее ресурсом и стойкостью к повреждениям, до сих пор не существует.

Причина проста: армированные композиты и, в частности, стеклопластик как наиболее типичный их представитель являются конструкционными материалами, получаемыми непосредственно во время постройки корпуса на верфи. Его механические свойства тесно связаны с конструкцией конкретного корпуса и принятыми на верфи технологиями, а их крайне сложно нормировать – далеко не всегда удается контролировать влияющие на качество факторы.

В отличие от металлов, применяемые для изготовления корпусов судов слоистые композиты типа стеклопластика подвержены старению. Причина этого – постепенная естественная деградация матрицы связующего вещества (полиэфирных либо эпоксидных смол) под воздействием воды, ультрафиолета, температурных перепадов.

В процессе старения пластик конструкции постепенно снижает механические свойства, но практически не изменяет своего внешнего вида и размеров, поэтому анализ его состояния путем контроля геометрических размеров сечения конструкции из композиционных материалов, в отличие от металла, лишен смысла.

При неблагоприятном сочетании условий естественное старение может привести как к распаду матрицы в толще, так и к снижению прочности контакта матрицы с армирующими волокнами, следствием чего станет ослабление ламината и накопление в нем дефектов. Читать далее

06.07.2015 Posted by | стеклопластик | , , , , | Оставьте комментарий

Наш опыт изготовления пуансона.

pict 00-00

При самостоятельной постройке судов из стеклопластика весьма трудоемкой и ответственной операцией является изготовление оснастки для формования корпуса — пуансона или матрицы. Рекомендуемые в литературе конструкции оснастки, как правило, требуют затрат большого количества материалов и не позволяют обеспечить необходимое качество поверхности обшивки в любительских условиях. 

Поскольку лекала для сборки пуансона нам пришлось заготавливать в городской квартире, мы вынуждены были применить вместо досок строительный картон — оргалит. Лекала получились легкими, занимали мало места при хранении и, что самое главное, их можно было согнуть по радиусу для переноски.

Разумеется, в конструкции пуансона подобные гибкие лекала могут быть использованы лишь для задания внешней формы каким-то жестким элементам, так как сам тонкий картон не обладает необходимой жесткостью и прочностью. Поэтому при сборке пуансона с обеих сторон лекала мы нашивали несущие рамы, собранные из обрезков сосновых досок.

В статье Д. А. Курбатова о постройке мини-яхты «Калан» (см. «КЯ» № 50) рекомендовалось в качестве заполнителя использовать цементно-песчаный раствор. Однако при изготовлении опытной формы по такому методу мы обнаружили, что получить требуемую гладкость поверхности довольно трудно; необходимо устанавливать много поперечных лекал, требуется слаженная работа сразу четырех «штукатуров».

Кроме того, исправлять затвердевшую бетонную поверхность оказывается очень трудно, особенно, если нужно не добавлять материал, а снимать какую-либо выпуклость. На нашем пуансоне для постройки корпуса яхты длиной 10 м и шириной 2,8м мы выполнили заполнитель из двух слоев: на внутренний слой из армированного металлической сеткой бетона накладывали наружный — отделочный слой толщиной 10—20 мм из гипса.

001

Малое время затвердевания раствора (как правило, не более 30 мин после затворения), простота обработки материала (его можно строгать рубанком, шлифовать наждачной бумагой и т. п.), возможность регулировать его твердость и время затвердевания раствора количеством воды, — все это безусловные преимущества гипса перед бетоном.

Основу каркаса изготовленного нами пуансона составляет прочный продольный «стапельный» брус, установленный на вкопанных в землю стойках на высоте 0,5—1 м. Протянутая вдоль верхней грани бруса стальная струна служит для контроля установки лекал, раскрепляемых стойками и поперечными брусьями.

Верхние кромки поперечных шергень — планок лекал должны быть строго горизонтальны и расположены на одном уровне. Соответствующие опорные бруски закрепляют и на самих лекалах. Лекала устанавливают на стапеле, контролируя их положение при помощи отвеса, уровня и струны. Нижние концы лекал крепят к кольям, вбитым в грунт; вертикальные стойки раскрепляют подкосами.

Когда лекала из оргалита выставлены, с их носовой и кормовой сторон крепятся несущие рамы. Мы собирали эти рамы на импровизированном плазе — заборном щите, на котором с точностью ±30 мм были нанесены координаты точек А, Б и В. Эти рамы крепятся только на основной продольной балке и к кольям. Наружные их кромки служат основой для зашивки пространства между лекалами рейками с шагом 50—80 мм.

Затем поверх реек натягивается металлическая сетка таким образом, чтобы от сетки до краев лекал — до наружной поверхности пуансона — оставалось 60—100 мм. Технология бетонирования армирующей сетки общеизвестна. Важно, чтобы между поверхностью бетона и чистовой поверхностью пуансона оставался зазор не менее 10 и не более 20 мм.

002

 

При меньшем зазоре отделочный слой гипса получится непрочным, при большем — существенно увеличивается расход гипса. Поверхность бетона для улучшения сцепления с гипсом следует делать возможно более шероховатой. Для отделочного слоя применяется гипсовый раствор без введения добавок-наполнителей (песка), так как это затруднило бы последующую обработку поверхности режущим инструментом.

В качестве опалубки для заливки наружного слоя гипса применялась деревянная (без сучков) рейка сечением 10X60, получающая плавную форму при изгибе. Длина рейки должна быть не менее четырех шпаций. Перед началом работы надо четко обозначить линию борта, для чего рейку прикладывают к лекалам таким образом, чтобы ее нижняя кромка совпадала с отметками линий борта на лекалах.

Затем рейка, покрытая слоем смазки (типа солидола) или парафином, чтобы исключить прилипание к ней гипса, временно крепится к лекалам. Снизу шпателем или мастерком наносится густой гипсовый раствор, такой консистенции, чтобы он не стекал с вертикальных и потолочных поверхностей.

Далее затворяют первую порцию гипса для заливки пространства между поверхностью бетона и рейкой. Раствор должен иметь густоту жидкой сметаны. Заливку удобно вести из ковшика, имеющего сливной носик. Весь затворенный гипс должен быть израсходован в течение 5— 7 мин, а если раствор густой, то быстрее — за 2—4 мин.

003

004

После     затвердевания     залитого гипса   (обычно, не  более  чем  через 10 мин) рейку снимают и передвигают по лекалам вверх так, чтобы ее нижний край перекрывал на 5— 10 мм затвердевший «пояс» гипса, и производят следующую заливку. За один прием следует заливать как можно большее число шпаций, кроме крайних. Для экономии времени на отделку пуансона подтеки гипса рекомендуется убирать сразу.

Пользуясь этим способом, два человека при помощи трех реек, каждая из которых перекрывала пять шпаций, выполнили заливку гипсом пуансона площадью 40 м2 примерно за 50—60 ч. При этом качество поверхности формы получилось неплохим — потребовалась лишь незначительная ее обработка.

При отделке гипсовой поверхности можно применять те же методы, что и при отделке дерева. После полной механической обработки рекомендуется пропитать поверхность гипса олифой, что в некоторой степени компенсирует высокое водопоглощение материала. Для заделки выбоин, трещин и сколов удобно применять замазку—«универсальную» (цена 20 коп.) или «оконную» (цена 30 коп.).

005

Общие затраты труда на изготовление пуансона составили около 400 человеко-часов, а стоимость израсходованных материалов не превысила 100 руб. (цемент 1т — 36 руб.; гипс 500 кг —31 руб.; прочие расходы, включая транспортные,— 33 руб.). Наружный гипсовый слой при защите его от воздействия атмосферных осадков оказался довольно стойким. Пуансон, покрытый рубероидом, простоял всю осень, зиму и часть весны.

Когда в мае мы сняли покрытие, никаких повреждений от влаги, мороза и т. п. на поверхности гипса не оказалось. Рубероид был уложен на прокладки так, чтобы между поверхностью гипса и покрытием оставался зазор 3—5 см; все швы на рубероиде заливались смолой.

А. В. Черешков.

Источник:  «Катера и Яхты»,  №83.

05.03.2015 Posted by | композитные конструкции | , , , | Оставьте комментарий

Стеклопластик в нашем малом судостроении. Часть2.

00 00

Как отмечалось, влага вообще отрицательно влияет на свойства стеклопла­стиков, поэтому конструкционные стекломатериалы всегда аппретируют — покрывают гидрофобным составом, отталкива­ющим влагу и способствующим лучшей адгезии полиэфирного связующего к поверхности стекла. Часто в руки любителей попадают изоляци­онные стеклоткани, которые обработаны не гидрофобным конструкционным, а парафино­вым или крахмально — масляным аппретом. Та­кая обработка, напротив, вредит прочности стеклопластика, поэтому изоляционные тка­ни пригодны для применения только после их предварительного отжига с помощью электронагревателя или над пламенем горелки. Taк как отожженные волокна имеют пониженную адгезию к связующему и более склонны к осмосу, они должны применяться совместно с эпоксидной смолой.

Стекломатериалы поставляются в следую­щих видах:

ровинг — это наиболее простая форма по­ставки; представляет собой непрерывный жгут из параллельных стекловолокон, смотан­ный в шпулю. Может иметь различную толщи­ну, определяемую числом сложений (обычно от 3 до 150). что дает значение погонного веса 300 — 4300 текс (г/км);

ткани; различаются по толщине нити и спо­собу переплетения; их поверхностей плотность составляет от 200 до 1600 г/м. Широко известна отечественная стеклоткань Т11 или Т12) с аппретом ГВС-9. Она имеет сатиновое переплетение 8/3. легко принимает сложные (формы и при правильной пропитке обеспечи­вает высокую прочность готового стеклопла­стика. Ткани более жесткого полотняного переплетения называются стеклосетками и стеклорогожами. Сетку с ее тонкой структурой используют для наружных слоев пластика. Рогожа изготавливается из ровинга, имеет вы­сокую прочность и жесткость и обычно приме­няется для армирования сильнонагруженных участков корпуса судна не слишком сложной формы. Большинство тканей равнопрочны в обоих направлениях — и по основе, и по утку, но встречаются и однонаправленные жгутовые ткани, подходящие для элементов судового набора;

маты (холсты) образованы ненаправлен­ным переплетением коротких отрезков стекло­нитей. Чтобы нити не рассыпались, их склеи­вают аппретирующей эмульсией, которая растворяется в процессе пропитки стекломата  связующим. Кроме эмульсионной существу­ет порошковая связка нитей, заключающая­ся в том, что связывающий аппрет концентрируется только в точках пересечения нитей между собой. Стекломат выпускается с различной поверхностной плотностью — от 225 до 900 г/м2. Армированный матом стеклопластик получается существенно менее жестким и прочным по сравнению с армированным тка­нью вследствие хаотичного расположения волокон и худшего соотношения стекло/связую­щее, и все же он наиболее популярен а конструкциях малых судов благодаря своей технологичности: мат легко пропитывается смолой, может принимать сложные формы и позволяет быстро набрать толщину изделия;

прочие разновидности стекломатериа­лов. Для конкретных технологических усло­вий выпускаются другие формы материалов: лента (тесьма), а также комбинированные маты образованные проклеенными либо про­шитыми слоями простых тканей и матов. Ком­бинированные материалы позволяют сэконо­мить время на раскрое; при этом слои заранее могут быть ориентированы оптимальным для прочности образом. Стоимость стекломатериалов зависит от предприятия — изготовителя и составляет 3 — 4 долл,/кг.

001

Углеволокно. При всех своих достоинствах стеклопластик в составе корпуса судна проиг­рывает металлам по жесткости. В случаях, когда соотношение жесткость/масса являет­ся определяющим параметром, могут быть использованы углеродные волокна. Их модуль упругости в три раза выше, чем у стекловолок­на. Применение углеволокна относится к сфере высоких технологий, требует особой тща­тельности в подборе типа и количества связующего; кроме того, угольное волокно на порядок дороже стеклянного, поэтому приме­нение углепластиков в судостроении до сих пор ограничивалось экспериментальными и спортивными образцами.

Арамиды. Несколько менее дорогостоя­щую альтернативу углеволокну в случаях, ког­да вес конструкции является критическим па­раметром, составляют арамидные волокна и ткани, более известные под названием «Кев­лар» или СВМ — армированный кевларом ком­позит на треть легче стеклопластика, прочнее его при растяжении и изгибе, но проигрыва­ет при сжимающий нагрузке, в качестве свя­зующего для арамидов лучше использовать эпоксидвинилэфирные смолы. Высокомодульиые волокна могут быть также скомбинированы с обычными стеклотканями, что улучшает механические свойства последних,

Заполнители. Трехслойные конструкции заняли в малом судостроении достойное мес­то благодаря присущей им высокой жесткос­ти, хорошим тепло – и звуко — изолирующим свой­ствам, возможности повышения запаса аварийной плавучести. По существу, комбина­ция двух слоев прочного материала, между ко­торыми помещен легкий малонагруженный за­полнитель, представляет собой отдельный тип композита, к совместимости компонентов ко­торого должны быть предъявлены особо жест­кие требования.

Фирмы — поставщики предла­гают разнообразные виды трехслойных заполнителей, надежность работы которых в составе полиэфирного ламината подтвержде­на опытом успешной эксплуатации изготов­ленных с их применением конструкций. Заполнители можно условно разделить на две технологически различные группы; гото­вые пластины (плиты) фиксированной толщи­ны и полуфабрикаты, образующие средний слой непосредственно в процессе формова­ния изделия.

002

К первой группе относятся следующие ма­териалы:

листы поливинилхлоридного или поли­уретанового пенопласта, имеющие толщину от 5 до 80 мм и плотность 40 — 200 кг/м3. Для выкладки сферических поверхностей применяются плиты, прорезанные в перпен­дикулярных направлениях и наклеенные для прочности на неплотную ткань. Существуют огнестойкие модификации;

бальзовые пластины, нарезанные попе­рек волокон. Этот заполнитель успешно ис­пользуется на протяжении многих лет (не­смотря на конкуренцию со стороны более долговечных и дешевых пенопластов] прежде всего благодаря своим прекрасным механи­ческим свойствам при более чем умеренной плотности 95 — 250 кг/м3 Разумеется, чаще его используют в тех странах, где бальза не считается экзотической древесиной.

Качество трехслойного пластика, изготов­ленного с применением жесткого заполните­ля, зависит прежде всего от качества склейки пары заполнитель — ламинат, поэтому здесь необходимо применение специальных клеев и приложение давления на время отвержде­ния клея. Кроме того, подкрепляемая поверх­ность должна быть по возможности прямой, без сломов и зигов, иначе придется заниматься трудоемким раскроем, подгонкой и разделкой кромок пластин заполнителя. Эта трудности значительно легче преодо­левают материалы второй группы. Из них при­меняются:

пасты, приготовленные на основе поли­эфирного либо другого связующего с хоро­шей адгезией к ламинату; в них подмешива­ет снижающие плотность добавки — полые стеклянные микросферы, бальзовую крошку.

специальный синтетический мат,  известный у нас под торговым названием «По­ликор». Разработан в Японии группой «U-Pica». В его структуру, образованную полиэфирны­ми нитями, включены стеклянные микросферы, но в отличие от пасты он пропитывается тем же связующим, что и несущие крайние слои. После пропитки плотность заполнителя составляет 600 — 800 кг/м3.  Сухой мат имеет заданную толщину 1 — 5 мм, остающуюся; не­изменной после пропитай, и фактически объединяет некоторые особенности пенопластов и паст. Прочность спаев, образованных  поликор — матом. относительно невелика, по­этому при больших толшинах конструкции они должны перекрываться промежуточными слоями стекломата.

003

Клеящие пасты, как правило, конструкция пластикового судна включает две секции или более, соединенные по линии борта, на стрингерах или переборках и т.д. От качества склейки секций зависит прочность и долговечность судна в целом. Здесь особенно ва­жен системный подход к подбору материалов корпуса и клея, потому что один и тот же кле­ящий компаунд будет вести себя по — разному на ламинатах с разными связующими основами. Принципиальная разница такова: эпок­сидные смолы в присутствии кислорода воз­духа полимеризуются активнее , тогда как полиэфирные, напротив, замедляют отверж­дение на воздухе.

Открытая поверхность эпоксидного пластика полностью полимерызуетея и покрывается слоем аминов, препятствующнх качественной приклейке к ней эле­ментов набора, по этому  место склейки должно быть зачищено механическим  путем: эпоксидный же клей реагирует с ним так же  как с любой другой инертной поверхностью. Открытая поверхность обычного полиэфирно­го ламината сохраняет «незакрытые» свобод­ные радикалы полимерных цепочек в течение приблизительно двух суток, поэтому однород­ные приформовки и клеевые составы способ­ны с ними взаимодействовать на химическом уровне, образуй монолитные соединения. Компании — поставщики предлагают клея­щие пасты (филеры) под разными торговыми марками, но сохраняется общее деление их на составы для склеивания готового ламината и составы для приклейки к ламинату деревянных / пенолластовых деталей конструкции.

Декоративы, Декоративные составы (гелькоуты или, проще, гели), которыми покрывают внутренние и внешние поверхности пластико­вых изделий, выполняют несколько важных функций. Во — первых, в декоративный состав вводится краситель, возможно, и другой улучшающий внешний вид компонент, такой, как алюминиевая пудра или маленькие цветные блестки. Во — вторых, гель содержит различные дорогостоящие добавки, увеличивающие стойкость и долговечность нижерасположенных слоев полиэфира под влиянием о кружающей среды с ее ультрафиолетовым излучением, влагой, кислотно — щелочным и абразивным воздействием. В — третьих, гель пресекает вы­ход стирола из отвержденного ппастка, улуч­шая его экологические показатели. Наконец, декоративное покрытие можно отполировать до зеркального блеска, что улучшает внешний вид судна и снижает его сопротивление движе­нию. Полировка рабочей поверхности матриц существенно облегчает процесс съема с них готовых изделий и упрощает контроль их формы. Расход декоратива составляет 0.5 — 0.6 кг на 1 м2 площади матрицы.

004

Производимые декоративы обычно пози­ционируются следующим образом:

■                 гель обычного качества, удовлетвори­тельно отвечающий всему комплексу пере­численных требований; его цена в зависимо­сти от цвета — 5 — б долл./кг;

■                 гель повышенного качества, особо стой­кий к внешним воздействиям, включая абра­зивный износ и открытое пламя; дороже обыч­ного примерно на 10%;

■                 ремонтный гель, легче поддающийся руч­ному нанесению и механической обработке;

■                 матричный гель для покрытия; рабочих по­верхностей оснастки; отличается повышен­ной твердостью и имеет темный цвет, облегчающий обнаружение дефектов; он почти вдвое дороже обычного;

■                 гель для внутренних поверхностей изде­лий (топкоут); образует грязеводоотталкивающую пленку и эффективно препятствует выходу стирола из ламината. Его стоимость не превышает стоимости обычного геля.

Большинство гелей имеют модификации для ручного и машинного нанесений. Их цвета соответствуют международному стандарту RAL, насчитывающему сотни и тысячи оттен­ков, причем на химических заводах произво­дят декоративы только основных цветов, а их оттенки получаются добавлением котировоч­ных паст по задаваемой компьютером рецеп­туре непосредственно у авторизованного продавца.

Вспомогательные материалы и оборудо­вание. У комплексного поставщика можно приобрести множество необходимых и про­сто полезных в производстве продуктов и расходных инструментов, таких, как:

  катализаторы (отвердители). Для эпоксидных смол это обычно полиатиленполиамин (ПЗПА),  для полиэфирных и эпоксивинилэфирных — перекись метилэтилкетона (ПМЭК).  Для работы с различными полиэфирами и по разным технологиям обычно пред­лагается гамма катализаторов, отличающихся степенью активности и агрегатным состоянием;

005

—  Вещества, модифицирующие свойства смол. Это разбавители — стирол, ацетон; пластификаторы; ускорители и замедлители процесса отверждения; тиксотропные добав­ки — аэросил, микросферы и т.п. Использо­вать катализаторы и модификаторы необхо­димо строго по инструкциям поставщика, иначе качество связующего может стать непредсказуемым;

■                 Материалы для обслуживания техноло­гической оснастки — разделительный воск для рабочих матриц (обычный либо высокотемпературный); разделители для новой ос­настки; полировочные пасты и полировочные круги;

—  Быстроизнашивающиеся инструменты, используемые при ручной формовке для пропитки и прикатки армирующего волокна — кисти, пропиточные и прикаточные валики различных размеров и формы, а также толщи­номерные калибры для гелевых пленок;

■                 Специализированные средства индиви­дуальной защиты — комбинезоны, респира­торы, сапоги и перчатки.

Зачастую поставщики материалов предла­гают и более дорогое оборудование для реа­лизации наиболее высокопроизводительных процессов. Опыт показывает, что современное налаженное стеклопластиковое произ­водство уже не может обойтись без использования некоторых машин, еще недавно казавшихся атрибутами «хай – тека», таких, как аппликаторы или дозаторы пенополуретана.

ТЕХНОЛОГИИ.  За полевка развития композитных пластиков сделан огромный шаг в направлении сниже­ния себестоимости, улучшения потребитель­ских свойств и экологической чистоты готовой продукции. Тем не менее все основные технологии, используемые в производстве армированных пластиков для судостроения, сложи­лись еще в 40 — 60-х гг.

Контактное формование. Многие массово выпускаемые изделия, такие, как удилища, лыжные папки, цилиндрические резервуары, производят на полностью или частично авто­матизированных линиях. Пластиковое судостроение остается одной из немногих отрас­лей, где большие объемы продукции производят самым простым, давно отработанным и требующим наименьших капитало­вложений методом — прямым контактным формованием в открытых матрицах.

006

Вкратце суть процесса такова. Подлежащее тиражированию изделие выполняется на легкообрабатываемого материала — дерева, пе­нопласта, модельной пасты, затем с него делают первый и обычно единственный съем негативной черновой матрицы, поверхность матрицы доводится до приемлемого для пересъема качества, и далее по ней формуется мастер -модель (она же — фальшизделие). Масса фалшизделия, так же как и масса мат­риц, в два-три раза больше массы окончательного изделия; для изготовления фальшнзделия применяют качественный материал, способный годами сохранять первоначальную форму и прочность. С этого образцового изде­лия снимаются рабочие матрицы (pиc. 2), ис­пользуемые непосредственно в технологичес­ком процессе.

При изготовлении изделий на поверхность рабочих матриц последовательно наносится разделительный слой, слой декоративного связующего (рис. 3) и далее — один за другим все слои ламината с ручной прикаткой пред­варительно раскроеннык армирующих, мате­риалов (рис. 4 и 5). После полимеризации пластиковый «пирог» снимают (рис, 6) и отправляют на дальнейшую обработку, вплоть до сборки — соединения отдельных секций в готовый корпус судна (рис. 7). Время жизни рабочих матриц — от нескольких десятков до сотен съемов, в зависимости от культуры производства на конкретном предприятии. Очевидно, стоимость всего комплекта оснастки будет отнесена на себестоимость готовых изделий, поэтому их серийность должна быть достаточно высокой.

За счет чего улучшался процесс контактного формования за последнее десятилетие? Прежде всего, благодаря появлению систем материалов с новыми свойствами облегчаю­щими труд рабочих и повышающими качество пластика. Разработка связующих с малой эмиссией стироле (LSЕ) улучшила условия тру­да формовщиков, а также снизила требования к принудительной вентиляции рабочих мест. Новые системы отверждения позволили расширить границы температурного режима в цехе. Теперь перебои с теплоснабжением не скажутся на качестве стеклопластиковой про­дукции. Появление новых смол с пониженным выделением тепла при отверждении дало воз­можность формовать изделия толстми слоями (более 10 мм) за короткое время.

Близкий эффект дает применение поликор — матов, эф­фективно поглощающих избыточное тепло и позволяющие быстрее набрать заданную тол­щину при экономии саязуюшего. Доступность и простота оборудования безвоздушного напыления декоратива позволила увеличить дол­говечность стеклопластиков за счет снижения пористости поверхности, вообще, понятие «гелькоут» появилось в нашем обиходе лишь в последние 10 — 12 лет; до того качество  деко­ративных слоев было ниже всякой критики (этот факт, кстати, стал одной из прискорбних причин определенного недоверия coвeтскoгo судовладельца — любителя к стеклопластику как корпусному матеркалу).

007

Метод «внедряемой оснастки». Если пла­стиковая лодка строится в единичном экземп­ляре, как это обычно практикуется судострои­телями –любителями, радикально снизить стоимость постройки позволяет метод «внедряемой оснастки». В этом случае первичная модель, изготавливаемая из легкодоступных  материалов, просто заформовывается с обе­их сторон ламинатом необходимой толщины и восполняет роль трехслойного заполнителя а составе композита. Единственный недостаток этого метода — низкое качество наружной поверхности — компенсируется практическим отсутствием накладных расходов на изготов­ление и пересъем матриц. Способы постройки первичной модели могут варьироваться бесконечно, в зависимости от конструкции судна и возможностей приобретения матери­алов для нее. С опытом постройки любительских лодок на внедряемой оснастке знакомил журнал «КиЯ».

Вакуумироеание. Значительно повышает качество изделий контактного формования применение известного метода «вакуумного мешка». Только что отформованную в матрице секцию помещают под гибкую газонепроницаемую мембрану, а затем воздух из — под мемб­раны откачивают вакуумным насосом. Атмосферное давленне при этом равномерно прижимает ламинат к поверхности матрицы, что дает возможность не только повысить качество склейки слоев  ламината с заполнителем (особенно — жестким), но и удалить пузырьки воздуха из связующего и отжать лиш­нее связующее в специально закладываемый под мембрану адсорбирующий материал.

Не­смотря на возможную при нспользовании  это­го метода экономию труда и времени на прикатку ламината, сама формовка существенно усложняется и требует от рабочего персонала определенного навыка, потому вакуумирование распространено лишь в единичном и ма­лосерийном выпуске сравнительно небольших по размерам высококачественных изделий, таких, как парусные доски, детали рангоута го­ночных яхт и т. п.

Метод напыления. Благодаря усилиям компаний, производящих соответствующее оборудование (например, «Aplikator» и Glas – Craft»,  метод  напыления стал теперь доступен не только промышленным гигантам, но и не­большим мастерским. Его отличие в том, что стекломатериал не пропитывается вручную валиком внутри матрицы, а подается непос­редственно в факел распыляемого связующе­го за головкой специального пистолета, при­чем смешивание смолы с катализатором происходит на пути от пистолета до оснастки. На головке установлен роликовый нож нарезающий нить ровинга на отрезки в дюйм  дли­ной. Таким образом наносится слой ламината толщиной до 10 мм, затем его прикатывают обычным образом (рис. 8).

008

Налицо экономия труда на раскрое мата, приготовлении смол и пропитке. Установки для напылення компакт­ны, мобильны, работают от магистрали сжато­го воздуха и достаточно быстро себя окупают,  тем  более что нож с распылительной головки можно легко  снять, превратив ее в инструмент для  нанесения декоративных слоев. Наиболее совершенные установки не требуют промывки подающих  магистралей перед сменой вида связующего — возможна  переключаемая подача до  десятка разных смол, гелей. Напыленный сттеклопластик менее пречен и жесток даже по сравнению с пластиком, армированным стекломатом, поэтому в сильнонагруженных узлах напыление желательно комбинировать с обыч­ным тканевым армированием.

Инжекционные методы. В случаях, когда снижение трудозатрат на формование может существенно повлиять на себестоимость изделий, идут на частичнyю  автоматизацию технологических процессов, позволяющую исключить ручную пропитку и прикатку ламината. Существует целая гамма патентованных, отличающихся только в деталях мето­дов, которые можно отнести к инжекционным  —  RTM, VАRТМ, RlRM, SCRIMP и пр. Их общий принцип таков: в матрицу, покрытую разделителем и гелевым слоем, вручную укладывает­ся полный комплект сухой арматуры, включая трехслойные заполнители, и его накрывают жестким или гибким пуансоном, герметизируемым по периметру.

Затем в «пироге» созда­ется разрежение и приготовленное во внеш­нем резервуаре связующее под действием атмосферного давления (либо принудитель­ным усилием насоса) устремляется в матри­цу и пропитывает армирующие слои (рис. 9). Состав связующего подбирается таким образом, чтобы отверждение протекало в мини­мальные сроки, но без неблагоприятного саморазогрева вызывающего дефекты и деформации изделия. Основная сложность состоит в том, чтобы добиться правильного наполнения пространства формы связующим  избежать как непропитки, так и перенасы­щения смолой отдельных участков изделия.

На отработку результата могут уйти значи­тельные сипы и средства. Наградой будет высокая эффективность производства, сопоставимая с эффективностью литья или штамповки термопластов, но при значительо более высоких потребительских свойствах самого изделия, включая неограниченность размеров и свободу выбора цветофактурного решения поверхности. Но главной причи­ной, активизировавшей внедрение инжекционных технологий на Западе, стало ужесточение экологических требований к производству пластиков: закрытая оснастка практически исключает попадание стирола и других вредных веществ в атмосферу.

Другие технологии. В «большом» судо­строении получили некоторое распростране­ние и другие, еще более связанные с необходнмостью применения специализированного оборудоаания методы. Taк, для изготовления тел вращения используется метод намотки ровинга на пуансон, позволяющий добиться исключительно высоких механических свойств изделий. Этот метод применим глав­ным образом для производства труб и цис­терн, но есть данные об изготовлении намоткой таких объектов, как корпуса вагонов.

Другая известная технология — метод протяжки, или пултрузия. Установки, реализую­щие этот метод, отличаются минимальной зависимостью от участия оператора; так изготовляют высокопрочные стеклопластиковые  балки, разнообразного сечения. В мало­тоннажном судостроении метод находит лишь ограниченное применение.

Поставщики.  Как уже отмечалось, обоснованный выбор поставщика систем материалов — залог качества конечного продукта. Хороший поставщик предоставит клиенту также необходимые кон­сультации и инструкции, касающиеся всех мо­ментов технологического процесса, от изготовления оснастки до предпродажной подготовки судна.

В советской централизованной экономике комплексные поставки не практиковались;  су­достроительные верфи работали под свою ответственность напрямую с химическими предприятиям;:. На Западе же укрепляли по­зиции такие известные торговые марки, как «Ноrроl/Jotуn» в Скандинавии; «Gougeon Brothers» в США; «Scott Ваdег» в Англии; «Bufa» в Германии и др. С перестрой­кой экономических отношений в России некоторые из них вышли и на наш рынок. На сегод­ня наиболее успешными по объему продаж оказались два бренда – «Норпол», переимено­ванный не так давно в «Райхольд» и финский «Несте», представленные соответственно петербургскими дигерами «Альтаир/Руспол» и «Композит ЛТД».

Обе эти компании предоставляет достаточно широ­кий ассортимент качественных материалов по близким расценкам. Со значительным отста­ванием идет «Гужон Бразерс» с патентованны­ми эпоксидными продуктами и технологиями WEST SYSTEM. К чести наших химиков, отечественные эпоксидные смолы удержали позиции в конкурентной борьбе с привозными ана­логами. Производство же пригодных для малого судостроения полиэфиров практичес­ки свернуто, поэтому предприниматель, же­лающий наладить серийный выпуск пластиковых лодок, вынужден использовать импорт.

Страдает от высоких цен, как водится, потре­битель. Сегодня малая стеклопластиковая верфь способна существовать и покрывать производственное затраты, продавая продук­цию по 12 — 15 долл. за килограмм массы Если бы отечественные химические заводы наладили выпуск собственных конкуренто­способных полиэфирных смол и стекломатериалов, эта цена могла бы стать на 20 — 25% ниже. Тогда и та же «Пелла» снова стала бы «народной» лодкой, как это было в 70 — е годы.

Алексей Даняев­. 

Источник:  «Катера и Яхты»,  №180.

01.09.2013 Posted by | стеклопластик | , , , , , , , | Оставьте комментарий

Стеклопластик в нашем малом судостроении.

Sailing Team Sitting on Edge of Boat

Пластмассовые композиты — самый популярный сегодня во всем мире материал для постройки маломерных судов. Около 90% зарубежного малотоннажного флота составляют лодки, катера, яхты с корпусами из стеклопластика. Да и у нас название пластиковой гребной лодки “Пелла” стало таким же нарицательным именем, как и дюралевая “Казанка”. Композитные палубы и надстройки все чаще используются в составе конструкций металлических судов, оклейка стеклопластиком — уже признана как наиболее эффективный способ продления срока службы корпусов, изготовленных из дерева. На это есть причины. Композиты долговечны (включая абсолютную коррозионную стойкость), имеют хороший внешний вид, относительно легки, не требуют сложного оборудования и высокой квалификации персонала при производстве и ремонте. В этом кратком обзоре рассмотрим основы технологии армированных пластиков, в первую очередь применительно к установившейся в России практике серийногомалотоннажного судостроения.

Стеклопластик — что это?

Если не брать в расчет финикийцев, которые еще три с половиной тысячелетия назад догадались для повышения прочности своих глиняных горшков закладывать в их стенки стеклянные нити, то история композитного судостроения в современном понимании насчитывает менее века.

В 1937 г. Рэй Грин — ученый из университета в Огайо — разработал принципиальную технологию применения меламино — льняного композита для изготовления первого крупного объекта — лодки. Несколькими годами раньше появилась первая промышленная стеклоткань, а в 1936 г. концерном «Дюпон» был получен патент на производство полиэфира воздействием малеинового ангидрида на некоторые сложные эфиры в присутствии перекисного катализатора и с приложением повышенного давления и температуры.

В результате экспериментов Грина к 1942 г. был отработан классический состав современного «лодочного» композита. В 1947 г. американские компании «Winner Boats» и «Wizard Boats» организовали первое промышленное производство небольших мотолодок, а затем пластиковые суда начали повсеместно теснить деревянные, особенно после долгожданного падения цен на материалы в конце 50х.

Сегодня пластиковое судостроение стало обособленной быстро развивающейся отраслью индустрии. Его прогресс подпитывается, с одной стороны, успехами активно использующего композитные материалы аэрокосмического машиностроения, с другой — усилиями научно — производственных корпораций химической промышленности, разрабатывающих специализированные системы материалов и оборудования для производства и ремонта стеклопластиковых изделий и судов в частности.

001

Такие системы включают совместимые оптимальным образом смолы, катализаторы, армирующие материалы, стандартизованные по цветам гелевыепокрытия, клеи и трехслойные заполните ли, а также технологическое оборудование, машины, инструменты и средства защиты персонала.

Как известно, с физической точки зрения армированный пластик представляет собой сложный материал, который обладает свойствами, отсутствующими у его компонентов в чистом виде. Армирующие волокна прочны, но гибки и проницаемы; связующие смолы — недостаточно прочны, хотя прекрасно держат форму и устойчивы к воздействию среды. Внедрение волокна в матрицу связующего и дает эффект, равносильный созданию нового материала, прочность и жесткость которого в некоторых условиях будет сопоставима с металлами при вдвое — вчетверо более низкой плотности.

Пластики не корродируют, а армирующая сетка эффективно препятствует распространению трещин при местных разрушениях. Стеклопластик прозрачен для радиоволн; в трехслойном исполнении имеет высокие термоизоляционные свойства и хорошо поглощает шумы и вибрации.

002

В то же время использование стекло и органопластиков в составе корпуса судна предъявляет к ним специфические требования. В первую очередь, должно быть ограничено водопоглощение или, как его еще называют, осмос. Вода может проникать в композит через микропоры в отвердевшем связующем, а также вдоль границы кон такта волокна со смолой. Осмотическое увеличение массы стеклопластиковых образцов составляет до 0.3 — 0.5% за 10 суток при закрытых торцах, и до 2.5% — при незащищенных торцах; потеря прочности при этом достигает 15 — 55% в зависимости от гидрофобных — водоотталкивающих — качеств армирующих волокон.

В еще большей степени склонен к водопоглощению пористый материал заполнителя трехслойных конструкций, популярных в спортивном и «высокотехнологичном» судостроении. Последствия такого намокания могут быть самыми неприятными: от увеличения веса корпуса судна до преждевременного старения конструкций из – за гниения, а также из — за микроразрывов при замерзании.

Судостроитель обязан уделять первоочередное внимание вопросам качества исходных материалов и их совместимости друг с другом. Важна конструктивно — технологическая дисциплина: вся поверхность пластика должна быть защищена соответствующим декоративным гелевым покрытием (рис. 1), особенно в местах выхода армирующего волокна наружу — вдоль обрезанных кромок, у вырезов. Не последнюю роль играет и правильный уход за поверхностью пластика.

003

Компоненты: системный подход

Сколь велико разнообразие применяемых компонентов и материалов, столь велико и значение их качества и совместимости друг с другом. Можно добиться отверждения некой добытой «за дешево» смолы первым попавшимся под руку отвердителем да еще на стеклоткани неизвестной марки, однако ни прочности, ни долговечности полученного композита никто гарантировать не сможет. В недавние времена верфь, работающая со стеклопластиком, имела специальную лабораторию, отвечавшую за контроль качества поступающего в работу сырья.

Сегодня пластиковую продукцию выпускают сотни и тысячи малых предприятий, (не говоря уже о судостроителях — любителях); иметь собственную службу качества им просто не по силам. Наилучший для них выход — комплексный подход к приобретению материалов, когда за совместимость основных компонентов отвечает единый поставщик — согарант качества. Рассмотрим стандартный набор этих компонентов.

Смолы.

К смолам как технологическому связующему компоненту предъявляются следующие основные требования: хорошая смачивающая способность и адгезия к армирующему материалу; малая усадка для предотвращения «пропечатывания» рисунка волокна на поверхности изделия; не слишком высокая вязкость при достаточном периоде пригодности после замешивания катализатора («время жизни», обычно измеряемое временем гелеобразования); быстрое окончательное отверждение, невысокая эмиссия вредных веществ.

004

В твердом состоянии применяемые смолы мало отличаются по механическим свойствам, тем не менее их выбор очень важен, так как в основном именно смолы определяют химическую, огне и биостойкость, а также контактную прочность готового пластика.

Эпоксидные смолы.

Широко применяются судостроителями — любителями благодаря следующим замечательным свойствам:

— высокая адгезия к большинству наполнителей, подложек и армирующих волокон; адгезионная прочность клеев на эпоксидной основе — одна из наиболее высоких среди существующих полимеров;

— разнообразие смол и отвердителей позволяет в широких пределах варьировать свойства получаемых композитов;

— отвержденные эпоксидные смолы имеют хорошие механические характеристики при малой усадке и высокую химо — стойкость.

Перечисленные достоинства обусловили их применение в первую очередь при ремонте пластиковых конструкций и для повышения долговечности деревянных корпусов путем оклейки их стеклопластиком. Эпоксидные пластики широко применяются для изготовления спортинвентаря, в конструкции которого комбинируются разнообразные материалы, и в малосерийном производстве небольших по — размерам изделий высокого качества — каноэ, парусных досок и т.п. Наиболее известны отечественные смолы марок ЭД116 и ЭД20; их стоимость сегодня составляет около 2.0 — 2.5 долл./кг, что значительно дешевле зарубежных аналогов.

005

В то же время высокая вязкость и токсичность, а также излишняя склонность к саморазогреву при приготовлении больших объемов ограничивают применение эпоксидных смол в серийном  судостроительном производстве.

Полиэфирные смолы

Менее вязки и, несмотря на сильный стирольный запах, менее токсичны, чем эпоксидные. Поэтому полиэфирные смолы давно и широко используются в серийном судостроении.

Еще лет 10 — 15 назад, когда были доступны только отечественные смолы, производство стеклопластика из них требовало немалого опыта. Все компоненты — ускорители, красители, тиксотропные и огнеупорные добавки — поставлялись независимо, и смешивались непосредственно перед употреблением, причем стабильность качества самих этих компонентов оставляла желать лучшего. В последние годы смолы доводятся до максимальной степени готовности на химических предприятиях и продаются «целевым назначением» — с учетом того, где и как они будут применены.

Потребителю остается лишь добавить к смоле соответствующий инициатор. Фирмы — поставщики всегда консультируют клиентов относительно назначения и способа приготовления каждого продукта из предлагаемой гаммы. Рассмотрим некоторые основные виды применяемых в малотоннажном судостроении полиэфирных смол.

006

— Смолы общего назначения называют ортофталевыми; в них, как правило, присутствуют тиксотропные (препятствующие стеканию) и ускоряющие отверждение добавки, поэтому перед применением в них необходимо ввести лишь 1 — 2% инициатора (катализатора). Современные модификации отвечают жестким экологическим требованиям, ограничивающим эмиссию из них стирола в пределах 2 — 5%. В зависимости от предполагаемого технологического процесса — для ручного либо машинного нанесения — смолы могут иметь различную вязкость и различное время гелеобразования. Стоимость обычных смол находится в пределах 2.0 — 2.5 долл./кг.

— Смолы улучшенного качества называют еще изофталевыми, поскольку при их изготовлении используется изофталевая кислота. Стеклопластики на основе этих смол имеют более высокие потребительские свойства, устойчивы к ударным нагрузкам и нагреву; их стоимость на 20% выше стоимости обычных смол.

— Огнестойкие смолы изготавливаются с применением галогеносодержащих компонентов и содержат некоторые порошкообразные добавки (трехокись сурьмы, тригидрат алюминия), снижающие способность пластика поддерживать горение, и замедляющие распространение пламени по его поверхности. Применяются для изготовления объектов, степень пожароопасности которых оговаривается соответствующими требованиями: бортовых шлюпок, элементов интерьера помещений; эти смолы дороже обычных на 40 — 80%;

— Смолы для изготовления технологической оснастки обеспечивают улучшенные механические свойства пластика, прежде всего — пониженную усадку и более высокую жесткость, а также имеют меньшую склонность к деформациям при экзотермическом нагреве в процессе отверждения. Они дороже обычных примерно на 25%. Существуют модификации со столь низким пиком экзотермы, что позволяют формовать оснастку за короткое время сразу толстыми (более 10 мм) слоями. Малая степень усадки смолы необходима для снижения эффекта проступания структуры армирования сквозь рабочую поверхность матрицы.

007

Эпоксивинилэфирные смолы.

Это относительно новая разновидность полимерных материалов, производство которых было налажено в середине 60х гг. компанией «Шелл». Они пока относятся к материалам высокой технологии и сочетают в себе достоинства полиэфирных и эпоксидных смол. По механизму отверждения они подобны полиэфирам и не содержат опасных для здоровья компонентов, а высокие адгезионные свойства и превосходная стойкость к воздействию среды сближает их с эпоксидами. Имеют те — же модификации, что и полиэфирные смолы

— предускоренные, с тиксотропными добавками, с малой эмиссией стирола, с повышенной огнестойкостью. Их стоимость в два раза выше стоимости обычного полиэфира.

Армирующие материалы. Стекловолокно.

В подавляющем большинстве случаев судостроительные композиты армируются стекломатериалом. При относительно небольшой плотности —

2400— 2600 кг/м2   — стеклянные волокна превосходят по прочности весь остальной армирующий текстиль; они не подвержены воздействию огня, микроорганизмов и большинства химикатов. Из них производится широкий ассортимент тканых и нетканых материалов, пригодных для использования в составе композитов на основе всех существующих смол. Форма сечения элементарных стекловолокон, как правило, сплошная круглая, но в продаже есть и материалы, выработанные из полого волокна, более легкого при той же прочности.

Основа обычного стекломатериала — бесщелочное алюмоборосиликатное стекло, так называемое Е — стекло. При достаточной прочности и химостойкости оно обладает хорошими электроизоляционными свойствами и максимально устойчиво к воздействию воды. Некоторое применение имеют материалы на основе магний — алюмосиликатного S — стекла, которое прочнее обычного на 40%, но уступает по стабильности свойств при увлажнении.

Алексей Даняев.

Источник:  «Катера и Яхты»,  №179.

06.07.2013 Posted by | стеклопластик | , , , , , , | Оставьте комментарий

Современный яхтенный парус.

В течение многих веков над совершенствованием паруса трудились поколения замечательных мастеров, выдающихся мореплавателей, а в последнее время и яхтсменов — гонщиков. Их усилиями парус, казалось бы, достиг вершины cвoeгo развития, однако сейчас мы являемся свидетелями настоящей революции в парусном деле. Появляются новые типы парусов, совepшенствуются методы их раскроя и шитья, создаются новые материалы для парусов. Многие из этих новшеств являются данью рекламе и вызваны элементарным стремлением ведущих фирм Запада завоевать рынок и привлечь новых покупателей. Однако проявились и такие тeндeнции, которые позволяют говорить о качественно новом этапе развития парусов для спортивных яхт.

Бурное развитие международных парусных гонок, в первую очередь, соревнований крейсерско — гоночных яхт, в немалой степени способствовало этому явлению. Гонки на «Кубок Америки», «Адмиральский Кубок», «Однотонный Кубок» и другие соревнования уровневых  классов, кpyгoсветные и трансокеанские гонки явились великолепной лабораторией, где лучшие гонщики на практике испытывали последние творения ведущих парусных мастеров и производителей парусных материалов. Именно при подготовке к «Кубку Америки 77» впервые появились экспериментальные паруса из полиэстерной (в нашей стране она называется лавсановой) пленки — м а й л а р а, обладающей высокой прочностью.

Главным ее достоинством является то, что она в одинаковой степени противостоит растяжению в любом направлении, в отличие от традиционных тканей, которые сильно растягиваются по диагонали относительно нитей основы и утка. Однако первые опыты с майларом оказались неудачными, так как пленка была очень хрупкой и легко рвалась. Маленькие проколы иглой быстро превращались под нагрузкой в разрывы от шкаторины к шкаторине. Пленка также сильно разрушалась под воздействием ультрафиолетовых лучей.

Следующее поколение материалов на основе майлара представляло собой ламинат, coстоящий из относительно легкой ткани (нейлон, тонкий дакрон) и полиэстерной пленки. В такой композиции ткань является армирующим мaтeриалом, существенно увеличивающим прочность на разрыв и уменьшающим хрупкость парусов. Полученный таким образом материал имеет одну гладкую сторону (со стороны пленки) и одну шероховатую (со стороны ткани). Попытки получить материалы, покрытые пленкой с двух сторон, успеха не имели, так как при двустороннем покрытии в материале нeизбежно возникали чрезмерные внутренние напряжения, которые приводили к eгo расслоению в зоне максимальных нагрузок.

В результате упорной работы парусных мacтеров, разработчиков и производителей мaтeриалов, удалось получить легкую, прочную и удобную в работе ткань. Современные паруса почти в два раза легче тех, которые применялись в аналогичных условиях вceгo 8 — 10 лет назад. В нашей стране в НИИ пластмасс получены и испытаны опытные партии композитных материалов типа майлара из лавсановой пленки на нейлоновой основе. Образец такой ткани весом 160 г/м2 на испытаниях показал такую же прочность и деформативные свойства, что и образец из дакрона весом 240 г/м2. Aнaлогичными свойствами обладают и ламинаты, производство которых налажено в Польской Народной Республике. Наши яхтсмены уже в ближайшие годы cмoгут сменить паруса из лавсана и дакрона на майларовые. Читать далее

12.08.2011 Posted by | Аэродинамика, паруса | , , , , , , , , , , , , , , , , , , , , , , , , | Оставьте комментарий

Старый материал — новая технология постройки корпусов яхт.


Д. Курбатов (По материалам зарубежной печати)

Дерево знакомое. С древесиной— замечательным строительным материалом, дарованным человеку природой, наше знакомство начинается с детства. С того момента, как у нас появляется потребность что-нибудь мастерить. Легкость и прочность, податливость хорошо заточенному резцу, чистота в обработке, привлекательная текстура, волнующий запах стружки — все это заставляет отдавать предпочтение древесине в ряду других доступных материалов.

Не возникали сомнения в выборе древесины и у строителей лодок, катеров и яхт, пока не появились легкие алюминиевые сплавы и стеклопластики. Они смогли конкурировать с деревом по такому показателю, как удельная прочность, т. е. отношение разрушающей нагрузки (или предела текучести) к плотности материала. А значит, поя вилась возможность строить прочные и легкие корпуса малых судов, не уступающие деревянным по ходовым качествам, мореходности и грузоподъемности. В отличие от деревянного корпуса, который состоит из сотен отдельных деталей, суда стали собирать из двух-трех крупных монолитных объемных стеклопластиковых деталей; значительно сократилась трудоемкость изготовления корпусов.

Достоинством пластмассового судостроения является также практически безотходная технология (при правильной организации производства). Деревянный корпус строится только из пиломатериалов самого высокого — отборного сорта; даже при использовании клееных соединений 30—35% пиломатериалов идут в отходы, вместе с которыми удаляются пороки древесины — сучки, косослой, трещины и т. п.

Недостатки дерева как судостроительного материала обусловлены его природным, органическим происхождением. Древесина состоит из множества клеток, образующих вытянутые вдоль ствола волокна. Поэтому материал является анизотропны м, т. е. физико-механические свойства древесины зависят от того, прилагается нагрузка к детали вдоль или поперек волокон. Древесина хорошо сопротивляется изгибу, сжатию и растяжению вдоль волокон, но разрушается уже при нагрузке, в 5—10 раз более низкой, если усилия прилагаются поперек волокон. Прочность зависит от породы древесины, ее влажности и даже условий, в которых дерево выросло. Конструируя корпус, судостроитель должен так расположить в нем детали, чтобы они были ориентированы волокнами по направлению действующих нагрузок, кроме того — учесть низкую прочность древесины на смятие и срез поперек волокон в соединениях этих деталей.

Особые заботы судостроителям доставляет влажность древесины, которая измеряется в процентах содержания воды по отношению к общей массе детали или заготовки. В растущем дереве клетки образуют капиллярные каналы, по которым живительная влага пронизывает весь ствол, поднимаясь до кроны. В свежесрубленном дереве содержится до 24% и более влаги, а для постройки корпусов можно использовать воздушно-сухой материал с влажностью не выше 12—15%. Свойства древесины — ее плотность, объем, прочность — в большой степени зависят от влажности. Например, при снижении влажности с 24% всего на 1 % прочность на изгиб повышается на 5%, на сжатие—на 6%, на сдвиг и ударный изгиб—на 3%. Поэтому судостроители стараются хорошо защитить наружную обшивку и детали набора корпуса от влаги, а самые легкие гоночные суда рекомендуют держать на берегу, спуская на воду лишь для тренировок и соревнований.

С колебанием влажности связано и другое неприятное явление — усушка, разбухание, коробление и образование трещин в деревянных деталях. При впитывании влаги размеры корпусных деталей увеличиваются, изменяется их форма. Меньше всего увеличивается длина — в направлении вдоль волокон — всего на 0, 1— 0. 3% (1—3 мм на метр длины). В поперечном сечении в радиальном направлении (по отношению к годовым кольцам) размеры увеличиваются на 3—5%, в тангенциальном ; направлении (по касательной к годовым кольцам) — разбухание достигает максимума до 10% (или 10 мм при ширине обшивочной доски 100 мм!). В корпусе судна разбухание и усушка деталей приводят к образованию неровностей на наружной поверхности обшивки, появлению зазоров, трещин, нарушению водонепроницаемости, обрыву и ослаблению соединений с металлическим крепежом.

Органическое происхождение древесины, ее способность поглощать влагу вместе с кислородом воздуха обуславливают развитие при определенных условиях загнивания и поражения грибками; в странах с теплым климатом бичом деревянного судна становятся морские черви и древоточцы.

Всех этих недостатков лишены корпуса из стеклопластика и металла. Хотя по опыту многолетней эксплуатации нельзя утверждать, что стеклопластик не поглощает воду, и что его прочность и долговечность не зависят от влажности, а алюминиевый корпус не разрушается коррозией. Но происходящие здесь процессы менее интенсивны и нейтрализуются применением соответствующей защиты.

Словом, ситуация в малом судостроении в последние десятилетия складывалась таким образом, что возможности древесины считались практически исчерпанными и она должна была уступить свои позиции новым материалам. Читать далее

10.07.2011 Posted by | дерево, композитные конструкции, стеклопластик, технология, фанера | , , , , , , , , , , , , , , , , , , , , , , , , , | Оставьте комментарий

   

profiinvestor.com

Инвестиции и заработок в интернет

SunKissed

мое вдохновение

The WordPress.com Blog

The latest news on WordPress.com and the WordPress community.

Домашняя яхт-верфь.

Сайт создан для тех, кто мечтает построить яхту своими руками - яхту своей мечты...

Twenty Fourteen

A beautiful magazine theme