Домашняя яхт-верфь.

Сайт создан для тех, кто мечтает построить яхту своими руками — яхту своей мечты…

Алюминий и парус – перспективы применения алюминия в яхтостроении.

 13925 - 001

Наши яхтсмены пока имели мало случаев познакомиться с алюминием на практике. Кроме как для изготовления рангоута на крупных крейсерских яхтах («Хортица», «Антарктика»), этот материал в отечественном парусном судостроении до сих пор применения не находил. Но если вы посмотрите на последнюю страницу обложки, то увидите там фотографию судна, полностью сделанного из алюминиево — магниевого сплава. Это парусный катамаран, построенный киевлянами. Другой катамаран примерно тех же размерений (15,5X5,7X0,7 м) и из того же материала спроектирован в Ленинграде. Чем же в обоих случаях  привлек судостроителей легкий сплав?

Прежде всего тем, что он легкий! Большая часть корпусных конструкций, как известно, рассчитывается для работы на изгиб. Прочность таких конструкций характеризуется коэффициентом жесткости Е I, т. е. произведением модуля нормальной упругости Е на момент инерции сечения I. У стали E = 20000, а у алюминиево-магниевых сплавов 7000 кг/мм2. Если учесть, что момент инерции пропорционален толщине сечения в третьей степени, то нетрудно подсчитать, что, например, при замене 3-миллиметровой стальной обшивки равнопрочной из легкого сплава толщина ее б, определенная из пропорции

20000 /7000   = б3/33

должна быть увеличена до 4,25 мм. Однако в связи с тем, что удельный вес наиболее распространенных в судостроении алюминиево — магниевых сплавов, например, АМг-5В, равен всего 2,65 г/см3, т. е. в три раза меньше, чем стали, получится выигрыш в весе корпуса около 50%.

d18 - 002 В действительности же этот выигрыш будет еще больше, так как минимальная толщина обшивки стальных яхт, определяемая с учетом технологических требований и потерь на коррозию, всегда берется больше, чем это необходимо для обеспечения прочности, а при постройке судов из алюминиевого сплава такого значительного завышения толщины не требуется.  Например, стальная обшивка 24-тонной «Хортицы», построенной в Ленинграде, имеет толщину 4 мм, хотя по расчету прочности получалась гораздо меньшая величина; такая же обшивка и у крейсерской яхты водоизмещением 16,8 т, построенной в Мариуполе.

В то же время более крупная американская 21-тонная яхта «Ондин» (рис. 1) имеет обшивку из легких сплавов примерно такой  же толщины (4,76 мм) и ясно, что ее корпус намного легче стального. О том, какое значение имеет снижение веса для катамаранов, неоднократно говорилось в сборнике (напомним, что все попытки построить суда этого типа из стали кончались полной неудачей). Но вес имеет немаловажное значение и для яхт классической конструкции, точнее, даже не вес, а его распределение по высоте судна.

 

003

Применение алюминия для набора и обшивки корпуса дает возможность, сконцентрировав значительную часть нагрузки в фальшкиле и облегчив конструкции выше ватерлинии, значительно повысить остойчивость яхты, а следовательно, увеличить площадь парусности и эффективность работы ее парусного вооружения. Например, палуба 22-метровой американской яхты «Киалоа-II», изготовленная из алюминиевых панелей, в пять раз легче деревянной. Толщина алюминиевой обшивки на этой яхте уменьшается от         13 мм у киля до 6,4 мм в районе скулы и борта, что также снижает вес надводной части корпуса.

На новом судне Эрика Табарли «Пан Дюик III» первой французской яхте из легких сплавов — уменьшение веса основных корпусных конструкций позволило установить фальшкиль весом 7280 кг, что составляет 58% от водоизмещения яхты порожнем. Для сравнения напомним, что на обычной деревянной крейсерской яхте вес фальшкиля, как правило, не превышает 45% водоизмещения.  Э. Табарли построил свою новую яхту специально для очередной трансатлантичеекой гонки яхт — одиночек, которая состоится в 1968 г.

004

Основные данные «Пан Дюик III»: длина наибольшая 17,45 м; длина по КВЛ 13 м; ширина 4,20 м; осадка 2,75 м; полное водоизмещение 13,4т. Парусность: грот 32 м2, стаксель 36 м2, генуэзский стаксель 80 м2. Макет  «Пан Дюик III» экспонировался во французском павильоне на международной выставке 1967 г. в Монреале. Конструкция яхты Табарли представляет особый интерес в связи с тем, что авторы проекта сумели создать судно с хорошими ходовыми  качествами и мореходностью и в то же время достаточно простое для постройки.

Наибольшую сложность при изготовлении корпусов из легкого сплава представляет сварка тонких листов обшивки. Чтобы избежать сварочных деформаций, необходимо применять специальные приспособления, сложность, а следовательно, и стоимость которых зависит как от размеров корпуса, так и от сложности его обводов. При малосерийной и, тем более, единичной постройке изготовление таких приспособлений значительно повышает стоимость судна.

005

Достаточно взглянуть на набор «Киалоа-II» (рис. 2), чтобы получить представление о том, каких трудов стоило обшить его тонкими алюминиевыми листами, избежав при этом появления поперечных деформаций в местах соединения обшивки с многочисленными легкими шпангоутами. Ведь нередко, взглянув даже на стальную сварную яхту, можно с легкостью «пересчитать ее шпангоуты» — так сильно покоробились листы обшивки между поперечным  набором. Можно представить, какое большое сопротивление движению яхты оказывают эти деформации, ориентированные поперек обтекающего корпус потока (особенно по сравнению с идеально гладким днищем деревянной яхты),

А теперь посмотрим, как выглядит набор (рис. 3—5) упомянутой французской яхты. Поперечный набор корпуса длиной 17,5 м состоит, если не считать флоров, всего из восьми мощных рамных шпангоутов (рис. 6), причем каждый из них, кроме кормового и носового, подкреплен парой пиллерсов, Продольный набор состоит из восьми днищевых и бортовых стрингеров, внутреннего киля, карленгса в ДП и палубного стрингера.

006

Применение такой продольной системы дало возможность, уменьшив число деталей набора до минимума, значительно упростить постройку яхты и обеспечить уменьшение деформаций за счет уменьшения протяженности сварных швов. Кроме того, места возникновения сварочных деформаций получились ориентированными в основном вдоль корпуса, что меньше отражается на ходовых качествах яхты. Важно отметить и то, что принятая двухскулая форма обводов яхты позволила резко уменьшить объем гибки: по существу, сложную форму, требующую гибки, имеет только один пояс, по верхней скуле, получивший название «банан».

Примерно теми же соображениями руководствовались авторы проекта ленинградского катамарана. Набор этого судна (рис. 7) выполнен по продольной системе и состоит из часто поставленных стрингеров и рамных шпангоутов, расстояние между которыми составляет около 1 м. Прямостенные борта позволяют свести к минимуму предварительную гибку листов обшивки. Мостик подкреплен пятью поперечными балками и большим количеством продольных гофров, которые легко могут быть получены обычной штамповкой.

007

Гофры можно заменить обычными ребрами жесткости, но в таком случае возраетет объем сварки. Элементами набора катамарана служат стандартные профили, выпускаемые нашей промышленностью. Только в районах притыкания бортов к палубе и днищу мостика необходима их предварительная гибка; остальные участки собираются из прямолинейных отрезков.

У нас нет опыта постройки яхт из алюминия, поэтому трудно с достаточной достоверностью судить о том насколько они будут дороже, чем стальные или деревянные. Предварительные расчеты показали, что вес голого алюминиевого корпуса катамарана, спроектированного ленинградцами, составит около 2,5 т  (стальной весил бы 3,25 т), а стоить он будет примерно на 2000 руб. дороже стального, считая стоимость 1 кг стали 9 коп., а алюминиево — магниевого сплава 90 коп. В общей стоимости катамарана сумма эта составит всего около 5% (кстати, эта разница может быть реализована по окончании жизни яхты—при продаже ее на слом).

008

Нередко высказываются опасения, что легкие сплавы в морской воде будут интенсивно разрушаться коррозией. Это мнение легко опррвергнуть сведениями об эксплуатации уже упоминавшейся «Ондин». За семь лет, прошедших со дня окончания ее постройки, яхта прошла около 10000 морских миль, несколько раз пересекала Тихий океан, участвовала в 60 крейсерских гонках (в шести гонках «Ондин» приходила к финишу первой, 26 раз занимала первое место среди яхт своего класса). И за все это время не потребовалось ни одного серьезного ремонта: обшивка яхты отлично выдержала испытание в наиболее агрессивных, с точки зрения коррозии, тропических водах океана.

Еще более примечательна судьба американской яхты «Виндкол», построенной в 1946 г. В связи с тем, что сварка легких сплавов в то время еще не была освоена, ее 10 — метровый корпус сделали клепаным. Обшивка была изготовлена из листов толщиной 5,6 мм. Первый серьезный ремонт яхты потребовался лишь спустя 14 лет после спуска на воду. Когда корпус очистили от краски, оказалось, что металл практически не пострадал от коррозии.

61_02_009

Незначительные коррозионные разрушения были обнаружены у краев отверстий под четырьмя заклепками. После ремонта корпус покрыли грунтом на виниловой основе и необрастающей краской. В таком виде он благополучно эксплуатируется по сей день.

Для конструкций из легких сплавов наиболее опасна электрохимическая коррозия, возникающая на участках, где имеется контакт с деталями из металла, по полярности значительно отличающегося от алюминия. О том, какие металлы являются для алюминия наиболее опасными соседями, можно получить представление из сопоставления их электрических потенциалов:

Цинк   ……………………………       — 300

Алюминиево-магниевый   сплав     0

Сталь   или   чугун       …………    + 150

Свинец     ………………………….    + 250

Медь       …………………………..    + 500

Нержавеющая сталь ………….     + 850

Напомним, что при контакте всегда разрушается металл с более  низким потенциалом. Чтобы избежать непосредственного контакта алюминия с металлами, имеющими положительный потенциал, необходимо использовать различные изолирующие прокладки, чаще всего резиновые или пластмассовые (тиоколовые, полиизобутилен), и мастики (битумные). Например, на «Виндкол» свинцовый балластный киль изолирован от корпуса неопреновой прокладкой, а килевые болты снабжены феноловыми шайбами. Валопровод вспомогательного двигателя установлен в дейдвудной трубе из легкого сплава на резиновых подшипниках, а бронзовые сальники изолированы резиновыми трубками. Бронзовый приемник забортной воды крепится к корпусу на подушке из твердого дерева.

6864_ 0010

Сложнее обстоит дело с защитой корпуса от электрохимической коррозии, когда из активного металла изготовлены детали, расположенные снаружи подводной части судна, например, гребной винт, Прежде всего, конечно, нужно по возможности уменьшить количество таких деталей (гребной винт, кстати, может быть изготовлен из стеклопластика). Хороший эффект дает также анодная защита, которая заключается в установке в районе опасного места сменной пластинки (протектора) из материала, имеющего более низкую полярность, чем алюминий, например из цинка или магния; при эксплуатации яхты протектор разрушается, защищая от разрушений обшивку. На «Виндкол» такая пластинка была установлена у гребного винта на ахтерштевне.

Опасности коррозионных разрушений в не меньшей мере подвергаются и конструкции, непосредственно не соприкасающиеся с морской водой, например, мачты. Влажный воздух и тепло солнечных лучей создают благоприятную атмосферу для окислительных и электрохимических процессов. Длительная эксплуатация неокрашенных алюминиевых мачт показала, что со временем на их поверхности появляются точечные (питтинговые) коррозионные язвы. По этой причине через несколько лет плавания мачту на «Виндкол» окрасили так же, как и корпус.

В отечественном судостроении богатый опыт защиты конструкций из легких сплавов получен в связи с постройкой и эксплуатацией спасательных шлюпок и катеров и особенно — надстроек пассажирских теплоходов типа «Киргизстан». Надстройки этих судов из сплавов АМг-5В и АМг-6 покрыты фосфатирующими грунтами типа ВЛ-02, ВЛ-03 и др., которые создают прочную защитную оксидную пленку. Как показал осмотр, проведенный спустя три года после спуска на воду головного судна, на надстройках и шлюпках грунт и краска сохранили хорошее сцепление с металлом и надежно защитили его от коррозии.

Есть все основания считать, что постройка парусных яхт из легких сплавов имеет в нашей стране реальную перспективу. Естественно, этот материал, как и любой другой, не может быть рекомендован во всех случаях. По нашему мнению, алюминий наиболее целесообразно применять для постройки яхт тех же размеров, что и из стали  т. е. водоизмещением более 8—10 т (именно поэтому в статье алюминиевые корпуса рассматривались прежде всего в сравнении со стальными). Для небольших крейсеров пока наиболее подходящим материалом остается дерево (при небольшой серийности), а наиболее перспективным — пластик (при крупносерийном производстве).

Постройка алюминиевых яхт в настоящее время под силу только крупным заводским коллективам яхтсменов на предприятиях, располагающих необходимыми оборудованием, оснасткой, а главное опытом работы е легкими сплавами. Редакция, со своей стороны, готова оказать заинтересованным организациям помощь в разработке проектов алюминиевых судов, в частности — предоставить чертежи эскизной проработки и расчетные данные 6-тонного крейсерского катамарана из легких сплавов.

Источник:  «Катера и Яхты»,  №12.

 

 

09.11.2013 Posted by | легкие сплавы | , , , , , , | Оставьте комментарий

Рассказ о мечте, или как строили «Кралю». Часть 2.

После установки «теплицы» вокруг формуемой палубы мы начали обклейку болвана, и опять по пройденной схеме: сперва стеклотканью, затем пенопластом и наконец шестью слоями стеклоткани. Спустя чуть более месяца, палуба была готова, отсутствовало только дно кокпита. Сняли палубу с болвана и аккуратно вынесли во двор, затем разобрали болван, а палубу перевернули и занесли обратно в гараж, так как предстояло вклеить дно кокпита и набор.

Постепенно, не торопясь, вклеили продольный набор и бимсы. Технология уже отработана на корпусе, поэтому работа идет довольно быстро. Палуба готова – снова выносим ее, кантуем и заносим, устанавливаем на корпус. Она легла как «родная», даже подгонка не потребовалась.

Теперь предстояло приформовать ее к корпусу, и тут снова на помощь пришел Константин, который посоветовал уложить в месте стыка палубы и корпуса узкие полоски стеклоткани, пропитанные эпоксидной смолой, а сверху установить палубу и плотно прижать ее. После этого излишки эпоксидной смолы были выдавлены, а корпус – приформован к палубе стеклотканью снаружи и изнутри. После этого он приобрел законченный вид.

Теперь предстояли шпатлевка и окраска. В первую очередь решили красить днище, для чего нужно было снова перекантовать корпус, а вручную это уже не получалось. Дворик довольно маленький, два крана не помещались, поэтому Альберт предложил обвязать корпус и поднять яхту за нос вертикально вверх. Согласился при условии, что обвязывать будет он сам.

Заказали кран и решили проверить качество приформовки пластика к пенопласту. Взяли дрель с тонким сверлом и начали сначала простукивать, затем пытались продавить, а там, где появлялись сомнения, просверливали отверстия. В носовой части палубы на довольно большой площади стеклопластик плохо приклеился, образовав пустотелые полости. Наутро решил, что нужно демонтировать палубу и снова все переделать.

Вообще в строительстве всегда есть место ошибкам и недочетам, никто от этого не застрахован. Когда меня спрашивают, сложно ли строить, я отвечаю, что строить несложно, сложно перестраивать. Тут необходимы огромное терпение, целеустремленность и уверенность в своих силах, нельзя, чтобы неудача взяла верх. Скажу честно, что одну деталь я переделывал четыре раза, пока не был достигнут желаемый результат.

Итак, один день ушел на снятие старой стеклоткани и зачистку от смолы, пара дней – на поклейку, затем еще целый день потребовался на приформовку набора, так что за не делю справились. Снова установили палубу на прежнее место. В носовой части из пенопласта приклеили пенопластовый оформитель фальшборта, который оклеили несколькими слоями стеклоткани. По такой же технологии сделали в кокпите и упоры для ног.

После перекантовки корпуса предстояли шпатлевка и покраска. Шпатлевали эпоксидной смолой, разведенной с аэросилом и микросферами: это достаточно бюджетный (по сравнению с фирменными эпоксидными патлевками) вариант, но неплохо себя зарекомендовавший. Есть единственный нюанс: шпатлевать нужно при невысокой влажности и температуре не ниже 22–25° С. Если шпатлевка не наберет должной твердости, то шкурить ее невозможно: сразу забивается шкурка, и работа прекращается.

Когда мы только начинали постройку, мне хотелось, чтобы лодка выглядела, как иностранные фирменные яхты с обложек глянцевых журналов. Поэтому были куплены лако — красочные материалы французской фирмы «Nautix», которая разработала простую стандартную систему покраски пластиковых судов и дала четкие рекомендации по соблюдению температурного и временного графика.

По технологии после шпатлевки на корпус должны быть нанесены двухкомпонентный эпоксидный грунт, затем грунт под покраску и далее двухкомпонентная полиуретановая эмаль. Помимо шпатлевки и окраски корпуса предстояло проделать множество других работ. Лодка стояла вверх днищем, поэтому, поставив внутри каюты обогреватель, начали проклеивать стык между палубой и днищем по всему периметру. Пока яхта находилась в нормальном положении, сделать это было бы затруднительно, так как пришлось бы клеить в «потолочном» положении.

Немного подравняли подволок с помощью пенопласта и зашили кожзаменителем. После этого изготовили перья рулей и киля. Посоветовавшись с Альбертом, приняли решение сделать сердечники из 10-мм фанеры, затем обклеить их деревянной рейкой, а полученную заготовку обработать таким образом, чтобы получить правильный профиль, который и обформовать стеклопластиком.

С перьями рулей особых проблем не возникло, а вот с плавником киля пришлось повозиться. Сама его конструкция не вызвала у меня доверия: эта деталь имела значительное удлинение – при габаритной длине 2185 мм толщина в самом широком месте составляла всего 40 мм. Поэтому я решил перестраховаться и вставил две стальные полосы по всей длине, крепившиеся к бульбу киля через нержавеющие шпильки.

Чтобы завершить все работы по окраске, пришлось дождаться весеннего тепла и сухой погоды. К этому времени корпус был покрыт эпоксидным грунтом, теперь его предстояло ошкурить, покрыть белым грунтом и нанести финальный штрих – полиуретановую эмаль. Стандартный белый цвет нам показался скучным, хотелось, чтобы боевая окраска яхты подчеркивала ее экстремальность. Рассмотрели около десяти вариантов, но выбрали два, один из которых оказался нереальным – в палитре цветов «Nautix» не было подходящего оттенка, а размешивать дорогостоящую эмаль для получения нужного цвета я не рискнул.

Решено было использовать зеленый и белый цвета. На компьютере сделали дизайн-макет в масштабе 1:1, затем на плоттере из пленки вырезали трафарет, который сначала наклеили для покраски зеленым цветом, а затем белым. Эмаль наносили с 2-мм нахлестом одного цвета на другой, затем нахлест сошкурили.

После завершения покрасочных работ корпус отполировали. На этом работы по днищу были закончены, и мы перекантовали корпус в нормальное положение. По сравнению с сияющими и переливающимися на солнце бортами необработанная палуба выглядела уныло. Ее и рубку покрасили в однотонный белый цвет, после чего дно кокпита и палубу по бортам и в носу покрыли специальным нескользящим лаком.

Теперь оставалось изготовить бульб, рулевой механизм, вант-путенсы, степс и т.п. Для изготовления бульба собрали около 150 кг свинца, сделали чертеж, по которому на заводе нам его отлили. Правда, то ли мастер-модель, то ли сама форма были сделаны не очень точно, деталь получилась асимметричной, к тому же при погрузке бульб уронили тонким концом вниз. Свинец – очень мягкий материал, поэтому от удара задняя часть деформировалась.

Рихтовать было бесполезно, пришлось обформовать свинец толстым слоем стеклопластика, а затем с помощью болгарки и лепесткового круга придавать ему симметричность и более правильную форму. Предполагалось, что бульб будет съемным, поэтому в нем изначально решено было сделать колодец под плавник киля и сквозными шпильками зафиксировать бульб на киле. По неопытности при отливке этот колодец не сделали, поэтому пришлось спасать положение с помощью зубила, стамески, молотка и терпения.

Вант-путенсы, штаг-путенс, закрутку стакселя, а также рулевые петли изготовили по собственным чертежам из нержавеющей стали. В принципе, установка этих деталей особых сложностей не вызвала. Исключение составили вант-путенсы, их мы решили перенести с корпуса на  палубу, а изнутри закрепить таким образом, чтобы перенести нагрузку от такелажа на корпус.

В остальном – все по проекту: штаг — путенс и закрутка установлены под палубой, степс стоит на палубе. Я уговорил Альберта установить в отличие от проекта два рулевых пера. Были опасения, что из-за широкой кормы при больших углах крена рулевое перо может выйти из воды, и яхта станет неуправляемой. Сделали один румпель, который установили в ДП лодки; усилие на перья передается с помощью шарнирных соединений и двух штанг.

Для опускания киля изготовили рамку из труб с парой блоков и лебедкой. Для удобства хранения и транспортировки рамку сделали разборной, состоящей из трех частей.

К сожалению, наш бюджет не позволил заказать фирменную мачту, поэтому нашли старую подходящего сечения. Под нее изготовили шпор с пятью встроенными лопарями, установили пластины для крепления стоячего такелажа, провели фалы. Из оборудования был минимальный комплект, состоящий из погона гика-шкота, двух погонов стаксель-шкота и нескольких блоков. Причем на палубе закрепили только погон гика-шкота, остальные дельные вещи решили монтировать, когда будет поставлена мачта.

6 августа, погрузив мачту на лодку, а все остальное сложив в каюте, мы отправились в яхт-клуб. Установили мачту, набили такелаж – и середина мачты начала выгибаться в корму. Опять проблема, а как с ней бороться, пока не знаем – краспицы уже и так максимально отведены в корму. Нужны более длинные, но их нет. Короче говоря, подвигали мачту по степсу, немного отрегулировали ее завал, и пока на этом остановились.

23 августа на вечер назначили первый спуск яхты. Проконсультировались с «бывалыми», как правильно провести обряд крещения. Крестной за помощь, терпение и понимание была назначена моя супруга Татьяна. Подкатили лодку под кран, завели стропы и приступили к спуску. Как только лодка коснулась бульбом воды, откупорили бутылку шампанского, крестная на рекла ее именем «Киви» и произнесла напутственные слова. Я смотрел на стоящую на воде яхту и не мог поверить своим глазам, что наконец-то этот день настал.  За три года строительства  привык видеть ее только в ограниченном пространстве гаража, и до сих пор не верилось, что через несколько минут мы поднимем паруса и пойдем в море.

Первый выход прошел при идеальных погодных условиях: легком ветре 3–4 м/с и гладкой воде, поэтому особых замечаний мы не выявили. Яхточка довольно бодро бежала как в бейдевинд, так и полными курсами, на руле не лежала, нормально управлялась под одним стакселем. В общем, было понятно, что она хорошо сбалансирована и легка в управлении.

На тот момент мне казалось, что мы спустим лодку и без всяких доработок будем ходить. Хотя когда я устанавливал палубное оборудование, Альберт говорил: «Сколько ни размечай, все равно придется переставлять, так как море поставит все на свои места». Так и случилось: первое, с чем мы столкнулись, так это с проблемами подъема и опускания киля. Киль имел обратную стреловидность и при опускании в нижней точке начинал клинить. Пришлось в колодце, в нижней и в верхней его частях устанавливать ролики.

Но при первом же выходе в свежий ветер киль начал сильно болтаться в продольном направлении – а это была куда более серьезная проблема. Надо было найти способ жестко зафиксировать перо киля в колодце. Для этого в его передней части установили резьбовые втулки, через которые двумя шпильками киль поджали к задней стенке колодца. И снова – на ходовые.

Только показалось, что вроде все хорошо и киль стоит «мертво», как после разгона до 8 уз перо киля начало жутко вибрировать, передавая колебания на корпус, причем все это происходило по нарастающей. (В авиации это называется флаттером, и возникает он из-за неравномерного набегания воздушного потока.) Все знатоки в один голос сказали, что дело в обратной стреловидности и посоветовали переделать колодец под вертикальное перо киля. Но при такой компоновке мы рисковали разбалансировать всю лодку.

Поэтому мы решили провести ходовые испытания и оценить поведение лодки сначала с килем, имеющим обратную стреловидность, а затем переставить его вертикально, и снова произвести замеры.

Выбрав подходящую погоду, прошлись каждым курсом по три раза, фиксируя данные анемометра, GPS и кренометра и выводя среднее значение. Затем демонтировали перо киля, установили его вертикально и дождались погодного окна с идентичными погодными условиями. После второго выхода стало ясно, что вибрация киля наблюдается в обоих случаях – и всегда на полных курсах при достижении 8 уз.

Таким образом выяснили, что флаттер происходит из-за недостаточной жесткости плавника.  Поэтому в межсезонье сделали новый плавник, склеив пакет из дерева, затем обработав его под профиль и обформовав стеклопластиком толщиной 5 мм с каждой стороны. Решили уже лета не ждать, а провести испытания прямо во дворе. Один конец пера киля закрепили жестко в горизонтальном положении, а на второй положили бульб. Перо сильно прогнулось, стрелка погиби составила почти 150 мм, стало понятно, что этот вариант – тоже неудачный.

 В конце концов нашли, как кажется, правильное решение: разрезали ножовкой последний вариант киля вдоль на две половинки, вовнутрь вставили пакет из труб квадратного сечения и снова собрали. Перо получилось настолько жестким, что практически не прогибалось даже под нагрузкой в 250 кг, что почти на 100 кг больше веса бульба.

С мачтой тоже пришлось повозиться – к следующему сезону она была заменена, но проблема неправильного прогиба осталась. Переставили вант- путенсы и переделали места раскрепления под палубой. Заодно усилили крепление степса к пиллерсу. Позднее переделали и бульб, но на этот раз все – от болвана до литейной формы – изготовили самостоятельно. На этом серьезные доводочные работы были закончены…

Изначально яхта проекта «Краля 630» задумывалась как соперник замечательному проекту Игоря Сиденко «Нева», очень популярному на всей территории бывшего СССР. Обе лодки имеют схожие габариты и примерно одинаковое водоизмещение. Кстати, первый экземпляр этой серии, яхта под названием «Револьвер» (или, как местные в шутку называют, «Черный пистолет»), которую строил непосредственно сам Сиденко, находится в Севастополе. К сожалению, несколько лет лодка стоит на берегу, поэтому прикинуться с прямым соперником пока не было возможности.

Но на сегодняшний день за плечами – четвертый сезон, и можно уже делать какие-то выводы. За это время «Киви» побывала в разных погодных условиях, начиная от штиля и заканчивая ветром 18–20 м/с с волной высотой до 2 м. Думаю, теперь действительно можно сказать, что ВСЕ ПОЛУЧИЛОСЬ. Ведь то, что изначально было заложено в проект, лодка реализовала на сто процентов, и даже больше.

Когда мы с Альбертом в первый раз обсуждали будущую яхту, он меня сразу предупредил, что она «заточена» под полные курсы, а на острых будет просто передвигаться, проигрывая по скорости и углу лавировки. Тем не менее в легкий и средний ветер в крутой бейдевинд лодка без труда разгоняется до 5–7 уз, а по углу лавировки не проигрывает «Конраду 25». Конечно, в сильный ветер, особенно на крутой встречной волне более тяжелые яхты уходят вперед, но при таком раскладе мы стараемся просто удерживаться в общей группе. Как я говорю, нам главное дотянуть до первого знака, а там уже наш конек – полные курсы. Вот тут понимаешь, подо что проектировалась лодка. Яхта начинает глиссировать на скорости 6.5–7 уз, но я бы назвал это, скорее, скольжением.

Как правило, при слове «глиссирование» или «серфинг» мы представляем несущуюся с задранным носом яхту и взды мающиеся усы волн с каждого борта, а в нашем случае этого не наблюдается. Лодка идет почти без дифферента, очень стабильна, рысканье, присущее яхтам с узкой кормой, абсолютно отсутствует. Поворот фордевинд без труда выполняется в любой ветер и на гладкой воде, и на волнении. Яхта не склонна и к брочингам – даже на критических углах крена.

Что касается условий нахождения экипажа на борту, то можно сказать, что лодка относится к яхтам «выходного дня». Большой и удобный кокпит сочетается с рубкой-убежищем, а поскольку мы ходим по выходным, в режиме прибрежного плавания, то подобная концепция вполне нас устраивает.

Дмитрий Бондарь. Севастополь, Украина.

Источник:  «Катера и Яхты»,  № 222.

27.01.2012 Posted by | проектирование, строительство | , , , , , , , , | Оставьте комментарий

Монтаж палубы и рубки судна.

Прежде чем приступать к достройке судна, следует расположить его корпус в нормальном положении — на ровном киле, выверив по шланговому уровню и отвесам. Перед тем как настилать палубу, нужно поставить весь дополнительный набор, указанный на чертежах и не вошедший в состав шпангоутных рамок Бимсы врезают концами в привальный брус и крепят шурупами, как пока зано на рис. 82. Устанавливают на место карленгсы — продольные рейки, которые служат опорами для стенок рубки и кокпита.

По возможности их не следует ослаблять врезкой полубимсов. В местах крепления уток, кнехтов, мачт и т. п. устанавливают подушки, скрепляя их с поперечным и продольным палубным набором. В носу концы привальных брусьев связывают толстым брештуком. В корме с помощью книц они скрепляются с транцем. Вырезы в палубе для люков оформляются брусьями, которые врезают в усиленные бимсы и крепят к ним на болтах и кницах. Верхние грани бимсов и карленгсов обрабатывают таким образом, чтобы настил палубы плотно к ним прилегал.

На каютном катере или на яхте до установки палубы рекомендуется также смонтировать наиболее громоздкое оборудование: койки, шкафы, и пр., так как позже эту работу выполнять будет неудобно. Чаще всего палубу настилают фанерой. Она получается легче дощатой, лучше обеспечивает водонепроницаемость, да и сделать ее проще. Листы настила склеивают заранее усовым соединением или на стыковых планках, вырезанных из такой же фанеры. Места склейки рекомендуется располагать ближе к бимсам и карленгсам или прямо на них.

Как правило, фанерный палубный настил перекрывает кромки бортовой обшивки, а его собственные кромки защищаются снаружи буртиками. К привальному брусу и карленгсам фанеру нужно крепить шурупами на водостойком клее, в крайнем случае прокладывая в соединении полоску бязи на густотертых белилах.

На более крупных судах часто на фанерный настил наклеивают тонкие (6—8 мм) планки из сосны или тика с небольшими зазорами между ними. Затем эти зазоры заполняют темной шпаклевкой, шлифуют и покрывают лаком. Получается имитация под классический дощатый настил, но не боящийся воздействия солнца и абсолютно водонепроницаемый. Фанера может быть покрыта сверху также парусиной или стеклопластиком.

Настил палубы может быть сделан и из сосновых досок, имеющих толщину на 15—20% меньше толщины наружной обшивки. На борт кладется широкая доска—ватервейс, обычно склеенная по длине из двух-трех частей и выпиленная по контуру борта. Ватервейс крепится на шурупах к бимсам, бортовой обшивке и привальному брусу.

Затем к кромке ватервейса прижимают доску настила. Ширина доски берется от 60 до 80 мм с тем расчетом, чтобы закрепить ее к ватервейсу гвоздями, забитыми через кромку (рис. 83). Узкие доски, кроме того, меньше коробятся при переменном воздействии солнца и воды. К бимсам доска настила пришивается также гвоздями через кромку. В носу концы досок 2 настила врезают в ватервейс / (рис. 84). Доски настила могут быть прикреплены к набору и обычным способом, как и наружная обшивка.  Длину гвоздей и шурупов при этом берут не менее 2,5 толщин доски. Для настила отбирают прямослойные доски с минимальным количеством сучков.

Пазы между досками конопатят ватой или пенькой и заделывают снаружи  эпоксидной шпаклевкой. Однако обеспечить надежную водонепроницаемость дощатого настила таким способом не всегда удается, и после двух-трех навигаций нередко палубу покрывают парусиной. Лучше сделать это припостройке судна, сразу же после монтажа кокпита и рубки.

Доски настила прострагивают, пропитывают олифой и выравнивают шпаклевкой. Тонкую парусину выкраивают по палубе, сшивая отдельные куски вместе. По бортам, у комингсов рубок и люков парусину выпускают на 20—25 мм для подгиба под буртики и штапики. На основе сурика или свинцовых белил и мела приготовляют жидкую шпаклевку (консистенции густотертой краски) и наносят ее тонким равномерным слоем на настил. Затем накладывают парусину, начиная с носовой части палубы, прижимают ее по диаметральной плоскости грузами и оттягивают к бортам, закрепляя мелкими латунными или оцинкованными гвоздями.

У рубок и люков парусину сначала прибивают к комингсам, а затем также оттягивают к бортам. Обтянутую и закрепленную парусину проторцовывают кистью до тех пор, пока она не пропитается шпаклевкой насквозь. После высыхания шпаклевки палубу окрашивают за два-три раза (последний раз — обязательно с добавкой 10—15% лака).

При выполнении этой работы нужно предусмотреть возможность замены парусины в дальнейшем без снятия рубок, люков и т. п. Штапики и буртики рекомендуется ставить на гвоздях с расплющенной головкой, ориентируя ее таким образом, чтобы она вошла в древесину вдоль слоев. На ватервейсе край парусины иногда закрепляют с помощью фальшборта (рис. 85), сам ватервейс лакируют.

Одним из важнейших узлов является соединение рубки с палубой. Оно должно быть прочным и не давать течи. В наиболее простых по исполнению узлах (рис. 86, а, б и в), к сожалению, довольно трудно обеспечить водонепроницаемость. Вода просачивается даже под штапики 4, по стыку между стенкой рубки 3 и карленгсом .

Конструкция на рис. 86, в, кроме того, может оказаться недостаточно прочной. Наиболее надежным и простым является соединение, изображенное на рис. 86, г. Стенка рубки хорошо связана с палубой через карленгс 6. Если вода проникнет под штапик, то дальше она просочится на палубу, а не в каюту.

Несколько сложнее узел, показанный на рис. 86, д, в котором комингс 3 рубки сопрягается с утолщенной доской 7 палубного настила, имеющей галтель. Вода, даже при крене судна, в стык между палубой и рубкой не попадает, а будет стекать по галтели на палубу. Дальнейшим усовершенствованием является соединение, представленное на рис. 86, е, с врезкой стенки рубки в палубную доску 7.

Требующийся наклон стенкам рубки задается заранее установленными в корпусе поперечными переборками и, в случае необходимости, дополнительным шаблоном в передней части рубки. Стенки могут быть заготовлены из фанеры толщиной 5—8 мм или из досок, склеенных по кромкам. Их ставят на место, прикрепляя к шаблонам временно, а к карленгсам и переборкам — постоянно на болтах (шурупах) и клею. К верхней кромке стенок рубки прикрепляют продольные бруски — шельфы, которые служат опорами для концов бимсов.

Гнутые (или гнутоклееные) бимсы могут иметь различную погибь: обычно к носу погибь увеличивается. При установке на место концы бимсов врезают в шельфы в виде «ласточкина хвоста» (см. рис. 82). Возможные варианты выполнения стыка крыши и стенок рубки показаны на рис. 87.

Вариант «а» пригоден для рубок с острыми углами граней соединяемых поверхностей и для последующего покрытия крыши парусиной, которая загибается под буртик 4. Вариантом «б» предусматривается защита кромок фанеры полосой 7 (она может быть металлической или дубовой). Варианты «в»—«д» применимы для рубок с закругленными углами поверхностей в соединении. На рис. 87, е показано крепление концов бимса к шельфу 5 с помощью брусков 8.

Аналогичные соединения могут быть применены и для лобовой стенки, но, как правило, угол наклона ее больше, чем у боковых стенок. Иногда крышу немного выпускают вперед в виде козырька (рис. 88, а), но подобное исполнение, как и обтекаемые формы рубок, противоречит современным канонам технической эстетики. Соединение, приведенное на рис. 88, б, удобно при криволинейной или стреловидной лобовой стенке рубки. Бимс 1 имеет обычную конструкцию, а брусу 5 придаются необходимые скругление и очертания в плане. Лобовую стенку надежно прикрепляют к палубе с помощью малкованного бруса, в ДП устанавливают прочную стойку или кницу 6.

На рис. 89 показано несколько способов заделки стекол. На рис. 89, а стекло 2 крепится при помощи деревянной накладки 3, установленной на мастике 4 в верхнем 5 (или в нижнем / — рис. 89, б, в) комингсе. Противоположная кромка стекла удерживается в пазах и уплотняется также мастикой. Если комингс рубки фанерный (см. рис. 89, б), паз выбирается в закрепленном с внутренней стороны бруске (накладке) 3 и стекло устанавливается в этом пазе опять-таки на мастике. Верхнюю кромку стекла можно прикрепить шурупами непосредственно к комингсу 5 на мастичной прокладке.

На рис. 89, в показан способ закрепления стекла с помощью деревянной полосы 3. Полоса крепится шурупами, а стекло уплотняется мастикой 4. На металлической рубке или комингсах из тонкой фанеры стекла можно закрепить при помощи автомобильного резинового профиля 6 (рис. 89, г).

Сделать неводотечными сдвижные стекла (рис. 89, е) удается при помощи следующих приспособлений. К комингсу /с внутренней стороны крепится полка 9, а к ней шурупами — полоса 12, по которой передвигается ползун 8, укрепленный на сдвижном стекле 2.

Для двойных стекол (рис. 89, д) нужно установить у полки металлические или платмассовые направляющие 8, но в этом случае герметичность практически не достигается. Скапливающуюся в направляющих воду отводят через просверленные отверстия  в желобок 10. Лобовые стекла, для лучшей вентиляции каюты на ходу, рекомендуется делать открывающимися.

Перед монтажом крыши рубки, желательно положить на бимсы лист декоративного пластика: он впоследствии заменит окраску. Лист пластика кладут на бимсы сверху лицевой стороной вниз, а затем уже на него настилают крышу. При небольшой погиби крышу делают из фанеры, в других случаях — из узких реек, подобно палубному настилу. Сверху для лучшей водонепроницаемости крыша может быть покрыта парусиной на краске или оклеена точчой стеклотканью на эпоксидной смоле Работы на палубе заканчиваются монтажом люков и выгородки для подвесного мотора.

На крыше рубки рекомендуется сделать сдвижной люк (рис. 90), особенно если пайол в кокпите выше, чем в каюте. Вырез для люка окаймляется карленгсами 9 (снизу, под крышей) и направляющими 6, длина которых вдвое больше длины люка к верхней кромке направляющих крепится дюралевая или латунная полоса 5, по которой скользит рельс 4, прикрепляемый к крышке люка 2. Обвязка крышки люка 3 собирается в шип и обшивается фанерой, рейками (лучше на шпонках) или opганическим стеклом.

Люк в настиле палубы должен быть прежде всего герметичным. Для этого крышка люка 3 (рис. 91, а) оклеивается по контуру уплотнительной резиной 2 и снабжается эксцентриковыми или винтовыми задрайками, которые плотно прижимают ее к комингсу 4. Обвязка крышки люка по высоте должна быть на 2 — З мм меньше, чем высота комингса, в противном случае она будет упираться в настил палубы, не соприкасаясь с комингсом через резиновую прокладку.

Практичен также люк с двойным комингсом (рис. 91, б). Он не потечет, если даже палубу захлестнет волна, и не нуждается в задрайках. Вода, проникнув за первый, наружный комингс 7, не пройдет через второй, а стечет по желобку 6 через отверстия в задней стороне люка. В пространство между комингсами также попадают капли, через стык между петлями.

Латунный угольник 5 надежно защищает люк от попадания воды при крене. Подмоторная ниша должна исключать попадание воды в корпус судна через транец, высота которого ограничена размером дейдвудной трубы подвесного мотора. Размеры ниши должны быть достаточными для беспрепятственного откидывания и поворота мотора.

Иногда ниша используется для размещения топливных бачков. В этом случае ее дно должно отстоять от верхней кромки транца не менее чем на 200 мм. Переднюю стенку ниши лучше заранее закрепить на предпоследнем шпангоуте вместе с рейкой—опорой ее дна. Такая же рейка должна быть на транце При сборке корпуса достаточно будет вставить продольные стенки, прикрепив их к палубе и к днищу, и подогнать дно при фанерной конструкции ниши полезно все углы в ней оклеить полосками стеклоткани на эпоксидной смоле.

В транце, выше днища ниши, делаются два отверстия — шпигаты для слива попавшей в нишу воды. Вырез кокпита по всему периметру окаймляется тонким комингсом, обычно из ценной породы древесины, отделанной под лак, реже из водостойкой фанеры Комингс может быть закрыт также мягкой обивкой из павинола, а бортовые ниши — зашиты листами декоративной фанеры (рис. 92).

Источник:  Д. А. Курбатов.  «15 проектов судов для любительской постройки».

31.12.2011 Posted by | строительство | , , , , , , , , , | Оставьте комментарий

Постройка деревянных судов. Клеи и склеивание.

Для склеивания основных деталей корпуса: форштевней, обшивки, палубы и т. п. — необходимы водостойкие смоляные клеи, такие. как ВИАМ Б-3, КБ-3, КДМ-5, эпоксидные.

Клей ВИАМ Б-3.

Состоит из фенолобаритовой смолы ВИАМ Б, которую перед склеиванием разжижают техническим ацетоном или спиртом-сырцом и добавляют в нее керосиновый контакт (контакт Петрова), являющийся отвердителем. При приготовлении клея в смолу (100 вес. ч.) вливают сначала ацетон или спирт (10 вес. ч.), а затем керосиновый контакт (16—20 вес. ч.) и перемешивают в течение 10—15 мин до получения однородной смеси. Клей, приготовленный таким образом, годен к употреблению в течение 2—4 час. При работе с ним следует иметь в виду, что смола содержит фенол — токсичное вещество, вредно действующее на кожу и органы дыхания.

Клей КБ-3.

Благодаря малому содержанию .свободного фенола безопасен для работы. Для холодного отверждения он приготовляется из 100 вес. ч. фенолоформальдегидной смолы Б и 26 вес. ч. керосинового контакта.

Эпоксидны й клей.

Пригоден для склеивания металла, древесины и пластмасс. Его основной частью является эпоксидная смола ЭД-5 (100 вес. ч.), отвердитель — полиэтил енполиамин (6,5 вес. ч.). Приготовляют клей небольшими порциями (он действует в тетечении 45-75 мин) Вливая в смолу полиэтилен полиамин и тщательно перемешивая смесь в течение 5—7 мин. Если клей получается слишком вязким, в него можно ввести немного растворителя — толуола, ацетона или спирта. Для склеивания корпусных деталей можно применять также эпоксидный компаунд К-153 и чехословацкую эпоксидную смолу «Эпокси-2000».

Кле й К-17.

Приготовляют из смеси мочевиноформальдегидной смолы МФ-17 (100 вес. ч.) с древесной мукой (8 вес. ч.); отвердителем служит 10%-ный раствор щавелевой кислоты в воде. Количество воды регулируется в зависимости от требуемой вязкости клеевого раствора. Клей применяют после тщательного перемешивания; действует он в течение 2— 6 час.

Для деталей, непосредственно не соприкасающихся с водой (рангоут, внутреннее оборудование), могут применяться казеиновые клеи. Они выпускаются следующих марок: В-105, В-107 и ОБ. Лучшим является клей марки В-105. Для приготовления раствора казеинового клея порошок казеина разводят в чистой питьевой воде комнатной температуры при соотношении его с водой как 1 : 1,7 или 1 : 2, в зависимости от требующейся начальной вязкости. Клеевой раствор сохраняет рабочую вязкость в течение не менее 4 час после приготовления.

В крайнем случае казеиновый клей можно использовать и для склеивания деталей набора самых маленьких лодок. После склеивания надо тщательно защитить поверхности деталей, особенно в районе клеевого соединения, от влаги, пропитав их горячей олифой или покрыв лаком. Водостойкость клея можно повысить, введя в него портландцемент и антисептик.

На 100 вес. ч. клея В-107 (в порошке) добавляют 75 вес. ч. цемента марки 200 и выше и 3 вес. ч. динитрофенола или оксидифенола. Цемент нужно применять самого тонкого помола и без посторонних примесей. Заготовки и детали для склеивания любым клеем должны быть соответствующим образом подготовлены. Влажность древесины не должна превышать 12—18%, склеиваемые поверхности нужно тщательно подогнать, прострогать и очистить от грязи. Нужно помнить, что чем тоньше будет слой клея, тем прочнее соединение.

Смоляной клей наносят на обе поверхности кистями, тонким слоем. Этот первый слой впитывается древесиной, поэтому нужно выдержать заготовки в течение 5—10 мин, затем нанести второй слой и соединить детали, прижимом их друг к другу с помощью струбцин, цвинок или грузов таким образом, чтобы создать давление от 2 до 4 кг/см2 . В некоторых случаях требующееся давление обеспечивается гвоздями и шурупами. Необходимое для этого количество крепежа можно определить из расчета, что один шуруп диаметром 3—4 мм и длиной 25—30 мм создает местное давление 50—70 кг; один гвоздь 2×20—около 20 кг.

Детали под давлением выдерживают в течение 15—20 час, обрабатывать же их следует не ранее чем через сутки после склеивания. Клеить в сырую, холодную погоду, в туман и дождь нельзя. Лучше всего это делать при комнатной температуре и влажности примерно 60%.

Клеить казеиновым клеем можно при температуре 12—25° С. Заготовки, покрытые клеем, выдерживают на воздухе 2—5 мин, затем соединяют. Закрытая пропитка продолжается 5—20 мин, после чего склеиваемые детали спрессовывают. Продолжительность выдержки под давлением при склеивании без нагрева составляет для прямолинейных деталей 6— 8 час, для изогнутых — 10—18 час. Обработка деталей возможна через 2—3 час после снятия пресса.

Расход смоляных клеев при одностороннем покрытии заготовки составляет 180—250 г/м2,

при двустороннем — 250—400 г/м2 и соответственно казеинового клея 350—500 г/м2 и 500—700 г/м2.

Гнутоклееные детали.

В корпусе малого судна есть немало деталей, имеющих криволинейную форму, таких, как форштевни, бимсы, привальные брусья, шпангоуты. При крутом изгибе их удобно сделать гнутоклееными (иногда называют такие детали ламинированными) из пакета тонких реек. Каждой такой рейке несложно придать требуемый изгиб, а затем склеить их. После затвердевания клея вся деталь сохраняет заданную форму.

В зависимости от габаритных размеров выклеиваемой детали делают заготовки из досок толщиной 8—10 мм, реек 4—7-миллиметровых или фанеры. Ширину заготовок следует брать на 4—6 мм больше, чем ширина, которую необходимо получить после окончательной обработки. Из досок (или толстой фанеры) делают шаблон — цулагу, соответствующий по форме и размерам обводам будущей детали; контуры шаблона снимают с плаза. Шаблон прибивают гвоздями к полу. На расстоянии от шаблона, немного большем толщины детали, закрепляют прижимы или прибивают упоры для клиньев или цвинок (рис. 42).

Заготовленные и выстроганные заранее планки намазывают клеем и спрессовывают в один пакет, прижимая его болтами или клиньями к шаблону (на рисунке в виде брусков). Можно для спрессовки использовать заклепки, шурупы, гвозди, если только они не послужат помехой при дальнейшей обработке детали.

Размечая шаблон, нужно учесть, что после снятия с него склеенной детали она немного распрямится. Поэтому шаблон нужно сделать с несколько меньшим радиусом кривизны. Например, выклеивая форштевень для лодки с высотой борта в носу 800 мм, нужно верхнюю точку штевня на шаблоне перенести внутрь корпуса на 70—80 мм.

При выполнении гнутоклееных деталей следует учитывать также, что радиус изгиба не должен быть меньше значений, указанных в табл. 6. В таких деталях удобно применять рейки из различных пород древесины. Например, наружные рейки на форштевне сделать дубовыми, а внутренние — из сосны.

Соединение длинных деталей.

Длинные рейки набора: привальные брусья, стрингеры, киль — можно склеивать из нескольких частей по длине. При этом имеется возможность вырезать все пороки древесины. Сращивают рейки «на ус», сострагивая стыкуемые концы под одинаковым углом (рис. 43). Длина заусовки обычно принимается равной 10—15 толщинам рейки. Такое же усовое соединение применяется и при изготовлении гнутоклееных деталей, мачт и других брусьев из нескольких слоев.

При этом стыки в соседних слоях разносят один от другого на расстояние не менее 24 толщин рейки. Смежные рейки следует располагать так, чтобы сторона одной рейки, ближайшая к наружному диаметру сечения ствола дерева (заболонная часть), прилегала к такой же стороне другой (или наоборот — сердцевина к сердцевине). Это нетрудно установить по годовым слоям (рис. 44).

Стыкование фанеры при постройке лодок делается либо «на ус», либо с подкладной планкой. Перекрой листов принимается равным 12—20 толщинам  фанеры. Рекомендуется обрабатывать стыкуемые кромки обоих листов совместно. Для этого нужно прикрепить на гвоздиках к верстаку сначала один лист, затем на него наложить, перевернув и отступя от обрабатываемой кромки на величину перекроя, второй и прострогать полуфуганком кромки сразу обоих листов таким образом, чтобы срезы у обоих листов фанеры были параллельны и имели одинаковую ширину (рис. 45, а).

При склеивании встык (рис. 45, б) подкладывается доска, сверху — другая; для обжатия, на доски надо положить грузы или спрессовать стык гвоздями. Если склеивание встык производится с подкладной планкой, то эта планка (рис. 45, в) вырезается из такой же фанеры шириной 100—120 мм и кладется на стык с внутренней стороны обшивки. Сопрягаемые поверхности, в том числе и торцы стыкуемых листов, намазывают клеем и запрессовывают с помощью грузов или мелких гвоздиков. Концы гвоздей загибают.

Соединение этого типа можно выполнить и без клея, проложив между листами фанеры и планкой кусок миткаля, пропитанного краской. Клей обычно наносят на детали с помощью кистей. Для больших поверхностей и при работе с вязкими клеями удобнее использовать шпатель из пластика с зубчатой гранью (рис. 46). Размеры зубцов подбирают такими, чтобы клей равномерно распределялся по всей поверхности.

Источник:  Д. А. Курбатов.  «15  проектов судов для любительской постройки».

30.11.2011 Posted by | строительство | , , , , , , , , , | Оставьте комментарий

Постройка деревянных судов. Рабочее место, приспособления и инструмент.

В зимнее время постройка лодки возможна только в сухом, отапливаемом помещении. Это может быть широкий коридор, подвальное помещение и даже комната. Важно, чтобы здесь разместились лодка (хотя бы наискосок) и верстак и еще осталось бы свободное место для прохода. Достаточным бывает помещение на 1 м длиннее и на 2 м шире строящегося судна. Если большого теплого помещения нет, то за зиму можно заготовить все детали набора, собрать узлы шпангоутов, транец и форштевень, с тем чтобы летом заложить судно на стапеле в сарае или под навесом. В крайнем случае можно строить и на открытом воздухе, закрывая корпус брезентом.

Как уже упоминалось, при постройке нужен верстак (для изготовления деталей), который можно собрать из двухдюймовых досок. Желательно сделать верстак такой же длины, как и строящееся судно, или, при меньшем его размере, расположить его так, чтобы на нем можно было обрабатывать длинные брусья, если подставить под их свисающие концы козелки.

Хороший верстак должен быть оборудован упорами, клиновыми зажимами и деревянными тисками (рис. 26), позволяющими обрабатывать деталь в любом положении. Вместо тисков можно использовать струбцины и цвинки — зажимы с клиньями. Подобные же приспособления необходимы и при сборке корпуса, в том числе и клещи (рис. 27). Клещи собирают из двух длинных брусков / с помощью болта 2. Усилие создается за счет клина 3, а чтобы концы клещей не изнашивались и не сминали деталей, их обивают кусочками кожи 4. Клещи хороши, например, для сборки наборной обшивки 5, когда требуется большой вылет струбцины.

При сборке и склейке многих деталей можно обойтись цвинками 7, вырезанными из толстой бакелизированной фанеры. Детали, например привальный брус 8, к обшивке 6 прижимают с помощью клина 3. Особое значение имеют струбцины (рис. 28), и чем большим их количеством располагает судостроитель, тем быстрее пойдет работа, поэтому необходимо заранее запастись ими или изготовить самодельные. Залог успеха всей работы — хороший и правильно заточенный инструмент.

Нужно располагать хотя бы минимальным набором: лучковой и поперечной пилой (желательно с мелкими зубьями), шерхебелем (рубанок с закругленным лезвием резца), рубанком, фуганком, набором стамесок и долот, коловоротом с перками и дрелью, сверлами, молотком, клещами, кусачками и плоскогубцами, отвертками, рашпилем и напильниками. При работе с долотом и стамеской нужно пользоваться деревянным молотком — киянкой. Необходим также инструмент для разметки и проверки деталей: метр, плотницкий угольник, отвес, рейсмус, ватерпас.

Подбирая рубанок или фуганок, надо проверить положение резца в колодке и его заточку. Резец устанавливается в колодке под определенным углом — углом резания (рис. 29). При угле резания, близком к 38°, рубанок хорош для строгания и торцевания, очень легко отворачивает стружку, но дает задиры и шероховатую поверхность. При угле около 52° инструмент дает гладкую поверхность, но строгать им гораздо тяжелее. Если увеличить угол резания до 80—85°, то такой рубанок может употребляться лишь для снятия тончайшей стружки — при зачистке уже остроганной поверхности.

В одинарных рубанках резец ставят передней гранью к плоскости строгания под углом 45—48°, в рубанке с двойным резцом — под углом 52°. Заточить же резец нужно примерно под углом 30°, проверяя этот угол по соотношению ширины затачиваемой фаски и толщины резца. Если ширина фаски в 1,5 раза больше толщины резца, то угол заточки равен примерно 34°. Ширина фаски, равная трем толщинам резца, соответствует углу заточки примерно в 18°.

Делать угол заточки больше 34о нельзя, так как резец будет скользить по поверхности, не срезая стружки; при угле заточки менее 18° резец очень быстро тупится. Такой резец если и годится, то лишь для строгания самой мягкой, прямослойной, лишенной сучьев сухой древесины. Фаска должна быть совершенно плоской, а само лезвие — прямолинейным. Только уголки лезвия закругляют, и они постепенно отходят от обрабатываемой поверхности плавным загибом. Без такого закругления углы оставляют на обрабатываемой поверхности рубцы.

Полезно сделать приспособление для заточки резца на точиле (рис. 30). В деревянном рычаге 2 делается прорезь с наклоном под углом 34°. В этой прорези клином 4 закрепляется резец 3. Если удерживать рычаг горизонтально при помощи упора 1, резец будет располагаться под углом 34° к точильному камню, т. е. под тем углом, под которым должна быть заточена фаска. Заточенный на точиле инструмент правят на плоском мелкозернистом точильном камне — бруске.

Перед правкой грубые заусенцы удаляют, втыкая лезвие в торец мягкой, но плотной древесины. На сухом бруске точить и править инструмент нельзя, так как лезвие может отпуститься и будет плохо работать. Брусок смачивают водой, реже маслом или керосином. Есть два способа правки резца на бруске. При первом способе (рис. 31) инструмент кладут фаской на брусок и сильно прижимают левой рукой. Затем резец равномерно двигают взад и вперед вдоль бруска резкими толчками. При этом стараются сохранить угол заточки и не закруглить фаску.

При втором способе резец правят непрерывными круговыми движениями по поверхности камня, плотно прижимая лезвие. При этом резец держат так, чтобы лезвие не врезалось в поверхность камня. Такое положение инструмента при правке придает ему большую устойчивость, и качнуть резец здесь не так легко, как при движении поперек фаски (при первом способе) Заусенцы во всех случаях снимают прикладывая инструмент другой стороной лезвия к поверхности бруска и делая несколько кругообразных движений. Окончательно лезвие нужно править на самом мелкозернистом бруске — оселке.

Лезвие любого режущего инструмента оказывается более стойким, если после каждой новой заточки сострогать им хотя бы несколько стружек. Если же между заточкой инструмента и его работой пройдет несколько часов, лезвие окажется менее стойким, быстрее затупится.

Стамески для долбления затачивают под  углом 30° (длина фаски — 2 толщины стамески), для строгания — под углом 20—25° (длина фаски — 2—2,5 толщины стамески); для резания, например, фанеры стамеска затачивается на 15° (длина фаски — 3,5 толщины). Точат стамески так же, как и резцы (рис. 32). Топор затачивается как показано на рисунке.

Долото затачивают очень отлого, градусов на 15 (фаска — 3—4 толщины), чтобы оно легко входило в древесину и не сминало волокон. На грубой работе тонкое лезвие может сломаться. Поэтому, заточив фаску на точиле, конец долота (не больше чем на 3 мм) затачивают на 25—30°.

Пила (ножовка) также один из инструментов, нуждающихся в периодической заточке. Но перед точкой необходимо ее зубья выровнять до одинаковой высоты. Сделать это можно с помощью плоского напильника, поместив его в простую колодку (рис. 33) из деревянных брусков.

Опилив выступающие зубья, пропиливают впадины между ними и придают им одинаковую форму. Затем зажимают пилу в тисках и разводят зубья в стороны так, чтобы пропил получился в 1,5—3 раза шире толщины полотна пилы. Чем мягче древесина, тем развод делается шире, и наоборот. Чтобы развод был одинаковым, пилу протаскивают зубьями между губками тисков, раздвинутыми на ширину развода.

Точат зубья обычно трехгранным напильником. Пилы с тонким полотном (не толще 1 мм), а также пилы, предназначенные только для долевой распиловки древесины, точат так, чтобы торцевые режущие кромки зубьев у них были расположены под прямым углом к плоскости полотна пилы. При этом напильник держат перпендикулярно полотну и с одинаковым нажимом двигают его вперед — назад, стараясь спилить зубья до одинаковой глубины, для чего проводят напильником по всем зубьям одинаковое число раз, делая совершенно одинаковые размахи (рис. 34).

При заточке зубьев поперечной пилы напильник ведут примерно под углом 60—70о к полотну. Сначала опиливают зубья, отведенные в одну сторону полотна (через один зуб), например помеченные четными цифрами (рис. 35, б). Затем, повернув полотно другой стороной, затачивают все отведенные в другую сторону зубья (рис. 35, б — обозначены нечетными цифрами). Напильником пилят так, чтобы он надвигался на зуб. Если он будет сбегать с зуба в обратном направлении, на зубьях будут образовываться заусенцы, и пила будет плохо работать. Чтобы напильник лучше снимал металл, следует натереть его древесным углем.

Нужно постараться раздобыть на время постройки какой-либо механизированный инструмент, например электродрель, электроотвертку, электрорубанок, наждачный камень. Хорошим помощником может стать и самодельная «шведская» ленточная пила (рис. 36). На ней можно выпиливать бруски, детали из фанеры (в том числе — с криволинейными кромками). В качестве полотна используется кусок ленточной пилы, который можно достать в любой столярной мастерской. Работают на этой пиле, нажимая ногой на педаль.

При сборке корпуса необходим шланговый уровень, который можно изготовить из двух стеклянных трубок диаметром 8—12 мм и длиной по 200—300 мм, соединив их резиновой трубкой длиной 4—6 м. В трубку заливается вода, подкрашенная синькой или марганцовкой.

Рейсмус (рис. 37, а), применяющийся для причерчивания обшивки, можно изготовить из обрезков / и 3 10-миллиметровой фанеры, склеенных через брусок 2. В верхней планке делают прорезь для карандаша 5. Прорезь стягивают винтом 4. Затягивая гайку винта, карандаш можно зафиксировать в нужном положении и причертить линию, например, для шурупов на скуловом стрингере (рис. 37, б).

Для работ по установке оборудования внутри корпуса полезно использовать также простое приспособление для причерчивания, состоящее из бруска / с закрепленным на нем карандашом 2 (рис. 38).

Источник:  Д. А. Курбатов.  «15 проектов судов для любительской постройки.».

29.11.2011 Posted by | строительство | , , , , , , , , , | Оставьте комментарий

Капитальный ремонт деревянных яхт. Замена килевой балки на яхте «Онега»». Часть 2, 1.

Крейсерская парусная яхта «Онега» класса «Л-6» построена на Ленинградской экспериментальной судоверфи в 1965 г. Корпус яхты деревянный: набор и рубка – из дуба, обшивка – из сосны, палуба – фанерная. Длина яхты – 12 м, водоизмещение – около 7 т. Зимой 2008/2009 г. силами команды был выполнен капитальный ремонт яхты: заменены килевая балка, часть наружной обшивки, нижняя часть форштевня и часть ахтерштевня в районе гельмпортовой трубы. Также была модернизирована сама гельмпортовая труба и изготовлен новый баллер. Объем работы оказался весьма внушительным для непрофессиональной команды, работающей в свободное время.

В том, что все намеченное удалось выполнить до начала навигации, – заслуга прежде всего капитана Никиты Бриллиантова, который сумел на протяжении всего ремонтного периода организовать бесперебойную работу, найти необходимые материалы и инструменты.

Несколько слов об инструментах. Основные работы производились с использованием привычного ручного инструмента: электродрели, электрорубанка, ручного фрезера, болгарки, шлифовальных машинок, фенов, шуруповерта, обычных ножовок по дереву и по металлу, молотков, стамесок. В ход шли кувалда, гаечные ключи, пассатижи, отвертки, пригодились дюжина струбцин и пара гидравлических домкратов.

Распиловку и калибровку реек для обшивки выполняли на циркулярной пиле и  рейсмусе, «взятыми в аренду» у соседей-профессионалов. Некоторые дополнительные конструкции для подъема-опускания балласта потребовали сварочных работ. Не лишними были и несколько мощныхосветительных приборов.

Конструкция классической яхты также классическая: к деревянному килю снизу крепится чугунный балласт, который по своей форме является продолжением обводов корпуса. Для замены килевой балки необходимо сначала отделить этот балласт, и уже работать непосредственно с килем. Потом этот балласт нужно не забыть укрепить обратно на новый киль. Вес балласта – 3 т.

Примерно столько же  весит «голый» корпус. Было принято решение установить корпус неподвижно и проводить различные манипуляции с балластом, опуская и поднимая его домкратами в нужное положение.

Яхту на штатных киль — блоках закатили в эллинг, установили повыше с дифферентом на нос, чтобы киль занял близкое к горизонтальному положение (изначально корпус имеет сильный построечный дифферент на корму). Поскольку предстояло демонтировать килевую балку, которая является основной несущей конструкцией корпуса, необходимо было основательно закрепить корпус.

Кроме штатных боковых опор на кильблоках сделали еще две дополнительные фундаментальные конструкции под форштевень и ахтерштевень. Высоту установки яхты выбирали с таким расчетом, чтобы снизу было достаточно места для извлечения шпилек, которыми балласт крепится к корпусу (они проходят сквозь весь балласт и килевую балку). При такой установке яхты килевая балка располагается примерно на уровне груди, что удобно для работы.

После того как яхту установили, сняли перо руля и вскрыли два нижних пояса обшивки, прилегающих к килевой балке. Это необходимо для «освобождения» килевой балки и для более свободного доступа к креплению флоров. К тому же эти поясья тоже требовали замены, впрочем, как и многие другие.

В образовавшиеся щели очень удобно передавать инструмент внутрь лодки и обратно. При удалении обшивки много проблем доставляет крепеж, которым обшивка крепится к набору и между собой. Из-за постоянно попадающихся нагелей использование электрического инструмента в этих работах весьма ограничено.

Затем принялись за шпильки, которыми балласт крепится к корпусу. Сначала нужно было выдолбить цемент, которым были заделаны отверстия под шпильки в балласте. Даже без шпилек балласт крепко держится на киле, поскольку по всей поверхности приклеен к нему. Решили, что этим можно воспользоваться и снимать киль вместе с балластом, используя вес последнего для отделения киля от корпуса.

Окрутили гайки на болтах, которыми к килю крепятся флоры. Открутили гайки на шпильках, скрепляющие киль с форштевнем и старн — кницей. Таким образом освободили весь крепеж, которым киль соединен с остальными конструкциями. Можно было приступать к его отделению от корпуса.

До этого момента яхта стояла не только на опорах, но и на киле. Теперь начали опускать киль, убедившись что корпус раскреплен надежно. Для того, чтобы балласт опускался вертикально и не упал, к кильблокам приварили направляющие из уголка. Сам процесс опускания производился при помощи двух гидравлических домкратов, и установленных под носовой и кормовой частями балласта.

Опускали, понемногу стравливая давление поочередно в носу и в корме. Балласт пошел вниз и «потянул» за собой килевую балку. Крепеж не мешал, но штевни были приклеены к килю герметиком, и требовалось «разодрать» этот клеевой шов, что нам удалось. После этого киль с балластом отделился от корпуса полностью.

Это был очень важный этап. Точка невозврата пройдена. Теперь, сколько бы ни было сомнений в реальности поставленных задач, путь оставался только один – делать новый киль и все остальное. С отделенного уже от лодки балласта стали отдирать килевую балку, предварительно выбив шпильки. Их сразу же пронумеровали, чтобы не перепутать, поскольку они все разной длины.

Приклеен киль был на славу: пришлось попотеть – использовать много клиньев, которые забивались в щель между килем и балластом. Но ломать – не строить, поэтому киль был вскоре отделен, а верхняя поверхность балласта зачищена. Стали выбивать из килевой балки болты, которыми к ней крепились флоры. Многие из них от ржавчины стали почти вдвое тоньше и не выбивались, а обламывались, оставаясь в дереве.

Приступили к дефектовке того, что открылось взору после демонтажа киля. А зрелище было нерадостное: прогнил не только киль в месте крепления форштевня, но и сама нижняя часть форштевня. предстояло заменить участок форштевня длиной более метра.

При этом форма его была достаточно сложная, изготовить такую деталь можно, только обрабатывая ее на месте. Сложность состояла еще и в том, что, отпилив старый кусок, мы потеряли бы контрольные точки его положения, поскольку ни киля, ни прилегающей к нему обшивки уже не существовало.

Поэтому, прежде чем начать пилить, был сделан шаблон по линии примыкания форштевня к килю. Заготовку для нового участка форштевня склеили из нескольких дубовых досок. Каждую доску подгоняли по длине, чтобы потом меньше спиливать. Следовало выдержать не только внешние бводы, но и внутреннюю форму форштевня, чтобы он состыковался и с оставшейся частью форштевня, и со старыми флорами, и с плоскостью киля.

Для склеивания использовали эпоксидную смолу, для шпаклевки – ее же с аэросилом. Температура воздуха в эллинге всю зиму была 10–15° С, поэтому склеиваемые места дополнительно «прогревали» прожекторами и иногда обогревателем. Склеиваемые доски стягивали между собой струбцинами. Затем в полученной заготовке просверлили отверстия для крепления шпильками к флорам, отпилили сильно выступающие части и приклеили к форштевню, подтянув к флорам шпильками и еще дополнительно поджав струбцинами.

Стыкуемая поверхность форштевня была также предварительно подогнана. Начался этап обработки форштевня. Снимать приходилось достаточно много материала, к тому же форма детали была вогнутая, что затрудняло использование рубанков. Придали форштевню более-менее правдоподобный вид, окончательную доводку решили делать после того, как будет готова обшивка. Кроме внешней формы нужно было еще сделать паз под обшивку. Глубину паза постоянно контролировали, прикладывая рейку к шпангоутам.

Параллельно с изготовлением форштевня занимались обработкой металлических деталей – флоров, шпилек балласта и степса мачты. Все они были зачищены болгаркой от старой краски и появившейся местами ржавчины и покрашены «холодным цинком» – специальной краской ЦВЭС. Также отциклевали внутреннюю поверхность корпуса.

Тем временем подоспела склеенная заготовка киля. Положили ее на балласт – вроде бы все красиво. Но, когда стали примерять к корпусу, оказалось что длины не хватает. Как-то так получилось, что не учли большой наклон форштевня, и заготовка оказалась короче. Пришлось наращивать самим. Сделали соединение клином. Сначала вырезали клин на киле, потом подгоняли склеенный дубовый пакет, потом склеивали.

Потратили на это два полных дня. Снова примерили удлиненную заготовку к корпусу, разметили отверстия под болты на двух флорах в носу и корме. Сняли киль, просверлили отверстия, сделали цековку с обратной стороны. Киль довольно тяжелый и длинный, манипулировать с ним можно минимум вдвоем, а лучше втроем-вчетвером.

Предстояло еще припилить горизонтальные поверхности форштевня и старнкницы под новую килевую балку. Делали это следующим образом: балластом поджали килевую балку к корпусу, одновременно выравнивая балласт с корпусом по длине и ширине. Поднимали так же, как и опускали при помощи двух домкратов. Поймать нужное положение не так-то просто, получается не с первой попытки.

Наконец все выровнено и прижато. Посмотрели, где получается щель и, начиная с этого места, пропилили ножовкой по дереву нижнюю кромку штевня, ведя полотно ножовки вдоль плоскости киля. Ножовку для этих операций лучше брать подлиннее. Припилили первый раз форштевень, поджали киль, припилили старн-кницу, снова поджали и снова припилили форштевень.

И так до тех пор, пока плоскости не сомкнутся без щелей. Нам хватило по два пропила. Поджимать киль лучше именно балластом, поскольку его поверхность тоже не идеально гладкая и надо, чтобы киль плотно прилегал и к корпусу и к балласту.

Следующая задача – просверлить в киле отверстия под шпильки, крепящие балласт. Сверлить отверстия решили снизу, используя отверстия в балласте как кондуктор. Но эти отверстия глубокие, диаметром 30 мм. Купили перку соответствующего диаметра и три удлинительные насадки. Когда все это воткнули в дрель, оказалось, что целиком эту конструкция не засунуть снизу – не хватает высоты.

Пришлось сначала вставлять в отверстие сверло с насадкой, потом зажимать его в дрель. Сверлить 50-миллиметровый дуб 30 – миллиметровой перкой снизу вверх, лежа на спине – занятие не из легких. К тому же сверло на длинных удлинителях сильно «колбасит», так что сверлили по очереди. Наконец закончили и эту операцию, вставили шпильки – все собирается. Пока киль поджат к корпусу,  через отверстия в флорах как через кондукторы просверлили соответствующие отверстия в киле.

Теперь следовало отмалковать верхнюю половину киля под притыкание наружной обшивки. Это очень длительный процесс. Надо снять достаточно много материала, но аккуратно, постоянно контролируя рейкой получающуюся форму. Наконец, и это сделано. Пока киль поджат в нужном положении, следует изготовить подкладки под те флоры, которые неплотно прилегают к килю.

Опустили балласт, шпильки уже не вынимали, просто пропихнули их вниз. Снова  сняли киль, перевернули, сделали цековки на новых отверстиях. Тщательно, в несколько слоев, пропитали эпосилом килевую балку. Теперь все предварительные операции были завершены, и мы приступили к окончательной установке киля.

Сначала соединили килевую балку с корпусом. Для этого подвесили киль на болтах к флорам, но не затянули их, а оставтли щель для смолы. Все болты на этом этапе должны быть вставлены, потом это сделать сложнее. Подняли балласт до касания киля.

После этого промазали стыкуемые поверхности киля, форштевня и старн —  кницы эпоксидкой с аэросилом (важно, чтобы она была погуще) и прижали балластом киль на свое место. Одновременно с этим затянули болты на флорах и на шпильках. После того как смола встанет, остается последний этап сборки – окончательная установка балласта.

Снова приспускаем балласт на домкратах, обезжириваем поверхности киля и балласта  и выдавливаем на верхнюю плоскость балласта несколько туб герметика, чтобы получился довольно толстый слой, который заполнит все неровности и щели между килем и балластом. После этого снова поджимаем балласт к килю и затягиваем гайки на шпильках.

Наконец-то яхта снова обрела свой «хребет». И, хотя борт еще не зашит, но это уже единое целое, а не две отдельные части с дырой между ними. Закончен, пожалуй, самый важный этап работы. От того, насколько качественно было все сделано, зависит дельнейшая жизнь лодки. Но нам не в чем себя упрекнуть. Все делали на совесть, без лишней спешки.

Получилось достаточно быстро, и это вдохновляло на дальнейшие трудовые свершения. Срезали болгаркой чрезмерно выступающие над гайками болты и шпильки внутри корпуса. Припилили контур килевой балки по форме балласта. Провели дальнейшую дефектацию корпуса. Поскольку стыки поясьев нужно разносить минимум на две шпации, получилась довольно большая площадь заменяемого борта. Но если делать – то делать как надо. Снова начали вскрывать обшивку. Особенно сложно было удалять ее возле форштевня: там много гвоздей и нагелей, да и приклеена она к форштевню хорошо.

Кроме этого, выяснилось, что ахтерштевень вокруг гельмпортовой трубы практически весь прогнил. Менять еще и его уже не было ни сил, ни времени, ни средств. Поэтому решили яхту дальше не курочить, а в районе гельмпорта сделать вставку в ахтерштевень, усиленную несколькими слоями дубовой «палубы», при этом возникла идея, как модернизировать сам гельмпорт, чтобы исключить контакт внутренней части корпуса с водой.

Для того чтобы было хоть какая-то возможность работать с ахтерштевнем, пришлось полностью разобрать кокпит. Но все равно оказалось довольно тесно, работать предстояло практически только в одном положении (не считая редких акробатических поз). В ахтерштевне ручным фрезером выбрали «окно», удалив весь гнилой материал (здесь нужна длинная фреза.

Для нашего слабенького фрезера таких фрез не производят, а найти более мощный не удалось.  Переточили во фрезы несколько разверток и неплохо ими отработали. По размерам окна сделали дубовую вставку, которую вклеили в ахтерштевень. Сверху с перекрытием 1.5 шпации наклеили четыре слоя 6-миллиметровой дубовой «палубы».

Для этого пришлось снять четыре флора и затем установить их обратно с прокладками на шпангоуты по толщине наклеенного на ахтерштевень материала. Здесь тоже была небольшая засада. Дело в том, что отверстия во флорах и шпангоутах просверлены по нормали к обшивке и при изменении положения флора эти отверстия уже не совпадали, и в нем пришлось сверлить новые отверстия совсем рядом со старыми.

Теперь настал черед еще одной нетривиальной операции – сверловке в ахтерштевне наклонного отверстия под гельмпортовую трубу. Отверстие не маленькое – 45 мм в диаметре, глубина –  миллиметров 200. Для этого сделали специальную «приспособу»: нашли сверло нужного диаметра, зажали в такого же диаметра патрон, который через штатный конус Морзе пристыковали к полутораметровому прутку диаметром 30 мм с шестигранным хвостовиком.

Этот пруток свободно перемещался в двух цилиндрических направляющих, которые крепились к рудерпосту соосно с баллером. Так была достигнута точность «прицеливания» при сверлении. Сверлили снизу вверх, с перерывами, чтобы остудить инструмент. Проходящие мимо зачарованно смотрели на происходящие – когда еще увидишь, как яхту сверлят насквозь! Отверстие получилось хорошее и точное.

Пару слов – о модернизации гельмпортовой трубы. Изначально это был кусок трубы, к которой приварен фланец. В трубе нарезана резьба для втулки сальника. Эта конструкция фланцем крепилась изнутри на ахтерштевень. Баллер проходил сквозь трубу с сальником и сквозь отверстие  ахтерштевне. Герметизировалась только верхняя часть трубы, а отверстие в ахтерштевне находилось в воде.

Поэтому там все и прогнило. Мы приварили с нижней стороны к фланцу еще один кусок трубы, чтобы получилось как бы продолжение гельмпортовой трубы. Эту трубу на герметике воткнули в отверстие в ахтерштевне. Так обеспечили изоляцию внутренней поверхности выреза от воды. С наружной стороны сделали втулку из фторопласта.

Тем временем привезли сосновые доски для наружной обшивки. На циркулярной пиле нарезали из них реек и откалибровали их на рейсмусе под размер 55х30 мм. Начали обшивать. Каждую рейку предварительно малковали под конкретное место. Поджимали струбцинами и клиньями, сажали на эпоксидку. Потом сверлили отверстия и стягивали рейки с набором нержавеющими болтами.

Утопленные шляпки болтов закрывали чопиками. Рейки укладывал один человек (так получилось). Делал он старательно, но медленно. Получалось по одной рейке в день. Примерно через месяц все рейки были уложены. Осталось прошпаклевать где надо и зашкурить корпус. Сразу же взялись за доводку нижней части форштевня. Теперь уже вывели форму окончательно.

Практически вся нижняя часть корпуса (кроме балласта и набора) была заменена на новую. А вот в верхней части появились новые проблемы. За зиму в теплом эллинге корпус стал рассыхаться. Щели на борту были практически по всей длине и толщиной 2–5 мм. Во время прошлого ремонта такие щели мы фрезеровали фрезой 8 мм и вставляли в образовавшийся паз рейку. В этот раз решили просто забить эти щели герметиком, которого потребовалось очень много. Но после забухания практически весь он был выдавлен наружу.

Пока вверху заделывали щели, внизу готовили корпус к покраске. Отшкуренные борта несколько раз пропитали эпосилом. Впитывался он поначалу мгновенно, как в губку. Также пропитали эпосилом все открытые поверхности внутри корпуса. После этого загрунтовали корпус ниже ватерлинии.

На палубе работа тоже кипела. Гордость «Онеги» – родная дубовая рубка – была отшкурена, проэпосилена и покрыта несколькими слоями лака. Ширстрек отциклеван и подремонтирован, где необходимо. Палуба ошкурена и покрашена. Сделан новый фальшборт из алюминиевого профиля с новыми кронштейнами. Кормовой релинг отрихтован и установлен на место. Установлены стаканы леерных стоек и частично натянуты леера.

Сделали слив от помпы за борт, а не в кокпит, как было раньше, немного изменили крепление самой помпы и рычага газа двигателя. Собрали обратно кокпит, предварительно заварив в нержавеющем «корыте» обнаруженные по шву щели. Установили погон гика — шкота. Навесили руль на новый баллер. Воткнули дейдвуд с валом и винтом.

Собственно на этом капитальный ремонт был закончен – лодка готова к спуску на воду. До сих пор не верится, что все это мы смогли сделать за одну зиму. Но это так. Как уже упоминалось, в этом заслуга прежде всего капитана, сумевшего наладить работу часто очень неорганизованных людей. А также  всех тех, кто принимал участие в этом процессе. Тех, кто взялся за эту большую работу и не бросил ее, довел до конца и вовремя.

Подготовили Андрей Ходоровский и Валерий Тихонов.

Источник:  «Катера и Яхты»,  №224.

24.10.2011 Posted by | Ремонт яхт. | , , , , , , , , , | Оставьте комментарий

Эффективность применения метода RTM в судостроении.

“В связи с тем, что судовая конструкция из стеклопластика создается одновременно с изготовлением самого материала, многие ее свойства и прежде всего прочность зависят от качества работы в гораздо большей степени, чем в металлическом или деревянном судостроении. Поэтому применение стеклопластиков при постройке судов требует особо тщательной подготовки и организации производства” .

И. М. Альшиц. Полиэфирные стеклопластики в судостроении, Л., 1964.

Прошло уже более сорока лет после написания этих слов, и сколько бы еще не прошло, но подготовка и организация производства будут оставаться решающими факторами для выпуска качественной продукции. За это время на международном рынке появилось сырье с новыми технологическими свойствами и новое оборудование, позволяющие внедрять технологии, которые отвечают всем требованиям современного производства высококачественного продукта. Большая часть мировых лидеров современного судостроения используют при постройке катеров и яхт технологию Resin Transfer Moulding (RTM) в том или ином ее виде.

Основной принцип этой технологии состоит в перемещении смолы, катализированной на входе, в закрытую форму, предварительно оснащенную  “сухими”, аккуратно расположенными армирующими материалами (с различными “усилениями”).

Технология RTM позволяет:

• механизировать производство, уменьшив случайный характер вмешательства человека и, таким образом, обеспечив постоянство качества;

• лучше контролировать количество используемого сырья;

• сократить и контролировать рабочее время;

• снизить отрицательное влияние используемого сырья на окружающую среду;

• улучшить условия труда, которые при традиционных методах переработки являются вредными;

• установить более “реалистичный” уровень инвестиций, учитывая большой спрос;

• организовать промышленное производство в течение короткого периода, ограничив текучесть рабочей силы;

• выпускать продукт с высокими механическими характеристиками и отличным внешним видом.   В зависимости от серийности выпускаемого продукта современный RTM-процесс делится на четыре типа:

• вакуумная инжекция (один-два съема в смену);

• RTM-эконом, или RTM-light  (один-четыре съема в смену);

• RTM-стандарт (четыре—восемь съемов в смену);

• RTM-плюс (восемь—шестнадцать съемов в смену).

В современном судостроении в зависимости от назначения конструкции и геометрии детали в основном применяются три первых метода и значительно реже — RTM-плюс, как предназначенный только для изготовления мелких деталей судостроительного назначения.

Попытаемся проанализировать и понять, в чем разница между этими методами и какие плюсы может получить отечественный строитель катеров и яхт в случае внедрения этих методов на своем производстве. В нашем случае не стоит акцентировать внимание на количестве съемов в смену с оснастки, так как тот или другой метод выбирается еще и по критерию прочности готовых изделий, а это для судостроения более важный показатель.

Вакуумная инжекция.

Матрица применяется той же конструкции,  что и при контактном формовании. Единственное требование — наличие отбортовки по всему периметру матрицы с шириной полки не менее 120 мм (рис. 1).

В качестве пуансона используют светопрозрачную пленку, имеющую хорошую химическую стойкость к стиролу (полиэфирным связующим). Пленка должна быть без внутренних дефектов и раковин, через которые возможен подсос воздуха во время изготовления детали. В качестве такой пленки применяют полиэтилентерефталат (лавсан).

В качестве смолопроводящих каналов могут служить трубки из твердого ПВХ с внутренним диаметром 7–16 мм со спиралевидной нарезкой. При растягивании этой трубки образуются зазоры между гранями, через которые смола под воздействием вакуума попадает в слои армирующего материала. Диаметр трубки определяется опытным путем, исходя из площади и геометрии детали, технологических параметров процесса и характеристик связующего.

Для реализации процесса необходимо иметь вакуумный насос (марка не имеет значения) или вакуумный пост с регулируемой производительностью (очень важно при изготовлении больших деталей) и вакуумом не ниже –0.6… –0.9 кПа.

Для скрепления пленки с матрицей применяют ленточный герметик как отечественного, так и импортного производства.  Для ускорения процесса формования можно использовать обычный нагнетатель, в который заливается катализированная смола. Нагнетатель несложно изготовить самим с нужным объемом или приобрести такой, который применяется для обычных красок. В этом случае рекомендуется в крышку нагнетателя установить систему вакуумной откачки. Она понадобится для очистки подающих шлангов от оставшейся катализированной смолы после завершения процесса формования.

Как видно из представленной схемы, для того чтобы перейти от контактного процесса к вакуумному инжектированию, больших капиталовложений не требуется. Практика западных производителей показывает, что два человека в течение смены таким методом формуют корпус пятиметрового катера и ряд мелких деталей для него вместе с продольно-поперечным набором или сэндвич-наполнителем.

На первый взгляд, вроде бы все просто. Но основа успеха — это правильный подбор основных материалов (армирующие материалы, связующие и др.), предназначенных для формирования структуры изделия.

В качестве связующего применяют  смолу, время гелеобразования которой — 50–120 мин. (в зависимости от площади формования), с низкой динамической вязкостью и не тиксотропную, на ортофталевой или изофталевой основе, которую выбирают в зависимости от конструкции судна и условий его эксплуатации.

Армирующие материалы могут быть разнообразными: это ткани различного плетения, в том числе и мультиаксиальные, эмульсионные и порошковые стекломаты. Но обязательным элементом армирующего “пирога” должен быть смолопроводящий слой. В качестве него могут применяться маты из непрерывной нити (“унифло”) или комбинированные двухслойные или трехслойные маты (“комбифло”), которые имеют в своем составе пористое полиэфирное волокно с поверхностной плотностью 180 или 250 г/м2( см. рис.1). Благодаря структуре этих материалов смола проходит с наименьшим сопротивлением и с большей скоростью внутрь армированного “пирога” и пропитывает его изнутри.

Для того чтобы судно было более легким и прочным, без продольно — поперечного  набора (что лучше) или с минимальным (для обеспечения прочности) набором, в качестве сэндвичных наполнителей применяют перфорированный пенополиуретан различной плотности и толщины. При использовании сэндвичной конструкции конечное изделие будет дороже, но его прочностные свойства и эксплуатационные характеристики — значительно выше, а вес меньше, и тогда рост цены на готовое изделие станет оправданным. Останется убедить покупателя, что деньги, потраченные им, быстро вернутся за счет экономии средств на горючее и “непредвиденный” ремонт судна.

При применении сэндвичных перфорированных наполнителей отпадает необходимость в смолопроводящих армирующих материалах, так как в этом случае смола проходит по прорезанным каналам сэндвичевого наполнителя (рис. 3 и 4), при этом для получения изделий с более высокими механическими свойствами можно использовать более высокопрочные стекло-, органо- или углеродные ткани.

И все-таки, чтобы как можно меньше возникало проблем с переходом на новый вид технологии, рекомендуется подбор основных материалов поручить поставщикам сырья.

RTM-эконом, или RTM-light.

Основное отличие вакуумной инжекции от метода RTM-эконом — в наличии в последнем случае мембранного пуансона, выполненного из стеклопластика толщиной 2–3 мм, оборудованного вакуумными замками (рис. 2).

Чаще всего этот метод применяется для изготовления небольших картоп-лодок или шлюпок, имеющих сэндвичную (трехслойную) конструкцию, а также небольших деталей, входящих в комплект катеров и яхт. Данный метод позволяет увеличить производительность за счет увеличения скорости инжекции и получить деталь, обе поверхности которой имеют декоративный защитный слой-гелькоут.

В этом случае возможно применение не только нагнетателя, но и специального инжекторного оборудования (например, “IPR-6000” шведской фирмы “Aplicator”). Но, поскольку пуансон имеет небольшую прочность, давление, под которым подается смола, устанавливается минимальным (1.2–1.4 атм), а вакуум — максимальным (–0.9 кПа).

В данном методе применяют все те же основные материалы, а также смола с более коротким временем гелеобразования. Все зависит от выбранной схемы инжектирования и, как следствие, скорости заполнения формы.

RTM-стандарт.

Данный метод более дорогой в плане технического оснащения, так как требуется обязательное наличие RTM-аппарата (инжектора) и дорогостоящей оснастки, которая состоит из жесткой матрицы и жесткого пуансона, имеющих вакуумные замки и механические зажимы. И матрица, и пуансон должны быть “усилены” прочными каркасами, выполненными из толстой слоистой фанеры или металлических профилей.

Однако при правильном подходе к делу RTM-стандарт позволяет практически полностью решить вопросы прочности, качества продукции, а также уменьшить трудоемкость и повысить культуру производства. Так, во Франции под Лионом есть предприятие, которое по методу RTM-стандарт изготавливает палубы яхт длиной до 12 м, не считая многих мелких деталей, таких как крышки люков, корпуса небольших отсеков, различные дельные вещи. Его производительность — около 200 катеров и яхт различного класса в год, причем формовку выполняют всего шесть человек.

Мы желаем всем, кто заинтересован во внедрении RTM-технологий, а следовательно, и в выпуске более качественной продукции.

 Виктор Ершов, Леонид Альшиц.

Источник:  «Катера и Яхты» ,  №200.

20.09.2011 Posted by | стеклопластик, технология | , , , , , , , , , | Оставьте комментарий

Матрица без секретов.

И так, как сделать оснастку с оптимальными затратами? С чего начать? Цена вопроса  —  это цена изделия и дoход от eгo реализации. Опыт подсказывает, что первый шаг для достижения цели — правильный выбор материалов оснастки с учетом технологии ее изготовления и квалификации исполнителей. А необходимого сырья, как отечественного, так и импортногo, на российском рынке имеется большой выбор.

В свое время нам приходилось работать с материалами разных производителей, но практика показала, что лучше вceгo применять те из них, что совместимы с используемыми технологическими процессами. При таком подходе к выбору сырья резко увeличивается вероятность достижения положительнoго результата, особенно если eгo производитель берет на себя отвeтсвeнность и за качество материала, и за предоставляемую информацию. Мы мнoгo лет paботаем с концерном «Reichhold», который, как уже убедились, поставляет достоверную полезную информацию и высококачественное сырье, потому о нем и пойдет речь.

Чтобы правильно подобрать материалы для производства оснастки, надо точно знать следующее: габариты изделия, eгo форму и вес, а также видовые требования к изделию; суммарное количество изделий, снимаемых за время эксплуатации матрицы; применяемый технологический процесс; используемое сырье для производства изделия; вpeмя на подготовку производства при запуске изделия; собственное техническое оснащение; квалификацию исполнителей.

Первые три показателя — габариты изделия, eгo форма и вес — определяют прежде вceгo основу будущей оснастки, т. е. ориентировочную толщину и схему конструкционного слоя матрицы; наличие и конструктив ее транспортных узлов. Знание еще и видовых требований к изделию позволяет выбрать приемлемую технологию производства оснастки, пусть не всю, но хотя бы доводочных операций. Зная это и количество изделий, снимаемых с матрицы, уже можно более детально проработать конструкцию оснастки.

Действительно, если количество снимаемых изделий мало, то нет смысла изготавливать оснастку с большим запасом прочности. Выбором технологического процесса производства изделия  контактный (ручное формование), метод напыления («спрей»), вакуумное формование или мeтод инжектирования  практически заканчивается проектная часть конструктивной проработки оснастки.

После этого, чтобы принять окончательное решение, следует определиться с тем, как и какими силами выполнить поставленную задачу. Для этого рекомендуем cocтaвить вопросник в табличной форме, гдe обозначим, как конструкция оснастки, технология ее изготовления и сырье влияют на конечный результат.

Получив ответы на все 10 пунктов вопросника, можно составить общую картину. Проанализируем таблицу, начав с последних пунктов. Квалификация исполнителей и собственное техническое оснащение  основополагающие факторы, которые определяют культуру производства и как итог —  качество выпускаемого продукта. При низкой квалификации и слабом техническом оснащении, какие бы великолепные материалы не применялись, говорить о качестве конечного продукта не приходится. Мы опираемся на квалифицированные кадры и из этого будем исходить.

Далее: при любой степени оснащенности производства на рабочем месте вceгдa должны находиться приборы, измеряющие температуру окружающей среды и влажность. Нельзя забывать, что при работе с полиэфирными (эпоксидными) смолами, полимеризующимися при комнатной температуре, значимыми являются температура окружающей среды, рабочей смеси и оснaстки (не ниже 18OС), а также влажность окружающей среды (не более 75%), скорость воздушного потока в зоне формовки (не выше 0.5 м/с).

Поэтому необходим лазерный термометр, позволяющий в считанные секунды определять температуру применяeмoгo связующего и оснастки и вовремя выполнять операции, которые снижают вeроятность брака при формовке, например, появления на декоративном слое изделия дефекта «крокодиловая кожа». Разница между температурой оснастки и смеси не должна превышать 1.5 — 2.0°C.

Перед нанесением декоративного слоя (гелькоута) поверхность мастер — модели нeобходимо обработать разделительным coставом, в качестве котopoгo рекомендуем применять широко используемый в Европе воск на силиконовой основе «Norpol W — 70».

В центр куска фланелевой ткани размерами 200х200 мм кладут две — три полные столовые ложки этого воска и, взяв ткань за концы, сворачивают своеобразный шар так, чтобы воск оставался внутри нeгo. Под воздействием стягивающих усилий воск проходит через поры ткани. Затем тканый шар легко опирают на обрабатываемую поверхность и вращательно — поступательным движением наносят тонкий слой воска. Таким способом можно наносить на поверхность мастер — модели или матрицы слой воска cтpoгo определенной толщины. Это очень важно, так как, если он будет толстым, то после располировки чистой фланелью окaжется снят.

Воск «Norpol  W70» наносится на мacтep — модель в четыре слоя с промежуточными выдержками в течение двух — тpex часов и располировкой. Располировывается воск чистой фланелью  вращательно — поступательным ее движением вдоль обрабатываемой поверхности. Последний слой воска рекомендуется выдержать в течение шести часов.

Перед нанесением декоративного покрытия воск покрывают тонким слоем технологического разделительнoго aгeнтa «Norpol Norslipp 9860» с помощью мягкой кисти или пульверизатора. Поверхность должна быть сухой и без пыли. Смывается обычной водой. Задача «Norslipp»  воспрепятствовать диффузии воска в поверхностный слой изделия при eгo нaгpeвe. При повышении температуры оснастки начинается насыщение ее дeкоративного слоя воском.

Для изготовления декоративного слоя будущей матрицы обычно применяются гелькоуты «Norpol СМ60014» (зеленый) или «Norpol СМ90000» (черный). Их можно нaносить вручную — тoгдa применяют «H» гелькоут («хэнд»)  — или распылителем — для этого предназначен «S» гелькоут («спрей»). Все они изготовлены на основе двух смол  —  винилэфирной и изофталевой и имеют высокие показатели по твердости, износостойкости и предельному водопoглощению. Температура их тепловой деформации в готoвoм изделии 110оС.

Самое широкое применение на практике при изготовлении матриц получил гелькоут зеленого (60014) цвета, поскольку он меньше утомляет зрение рабочего и снижает вероятность брака при работе. Гелькоут  чернoгo (90000) цвета в основном применяется при производстве конечных изделий зеленого цвета.

Гелькоуты «Norpol СМ60014Н» (или «СМ90000Н») наносят мягкой кистью в двa — три слоя с промежуточной выдержкой между ними до состояния «отлипа». Толщина каждого слоя  0.2 — 0.З мм (по «мокрому» слою). Суммарная толщина слоев должна составлять 0.55 — 0.85 мм, направление нaнесения слоев —  900 дpyг к дpyгy.

Гелькоуты «Norpol СМ600145» («С М900005») наносятся аппаратами безвоздушного напыления (например, «Aplicator» JPG — 24) в три — четыре слоя с промежуточной выдержкой между слоями 5 — 1 О мин при поддержании необходимого температурногo режима окружающей среды и гелькоута (2ЗО С). Толщина каждого слоя —  0.15 — 0.25 мм, направление слоев дpyг к дpyгy — 900. Суммарная толщина —  0.55 — 0.85 мм. Толщина слоев замеряется в «мокром» coстоянии специальным толщиномером.

Очень важно при работе иметь паспорта на применяемые материалы, гдe не только приводятся их характеристики, но и описываются дополнитeльные компоненты, необходимые для приготовления рабочей смеси. Например, для тoгo чтобы произошла полимеризация гелькоута «СМ60014Н» («СМ90000Н») в течение З5 — 45 мин при тeмпературе 2ЗОС, в нeгo следует добавить «Norpol пероксид №1» (MEK — l) в количестве 1.5% веса гелькоута. Время полимеризации гелькоута «Norpol СМ600 145» («СМ900005») при вышеобозначенных условиях сокращается до 25 — З5 мин.

Здесь важно не путать понятия «полимеризация» и «гелеобразование». Полимеризация  это время готовности слоя для проведения последующей операции; гелеобразование  время работы с готовой смесью.

Некоторые производители стеклопластиковых изделий наносят матричный гелькоут с промежуточной выдержкой между слоями 12 ч. Это ошибочное решение, так как нарушение временных параметров технологического процесса ведет к изменению физико — механических свойств декоративногo слоя матрицы, а иногда и к откpовeнному браку. В ходе длительной выдержки мoгут измениться параметры окружающей среды вокpyг закладываемой оснастки, а на гелиевое покрытие осаждаться влага, пыль, маслянистые пары. В этом случае достичь качественной адгезии декоративного слоя и ламината практически невозможно.

Для производства ламината матрицы можно применить любую полиэфирную смолу, но не спешите выбирать самую дeшевую. Рекомендуем вновь проанализировать таблицу. Не зря все производители полиэфирных смол отдельно выделяют категорию смол, предназначенных для изготовления матриц, поскольку прежде вceгo в ламинате они имеют тенденцию к усадке.

Кроме тoгo, качество ламината зависит от их количества в нем и метода изготовления; температуры eгo тепловой деформации; теплопроводности; физико — механических свойств и времени запуска оснастки в производство. Концерн «Reichhold» предлагает на ceгoдняшний день две системы изготовления матриц на основе смол «Polylite 41 0 — 900» и  «Polylite ЗЗ542 — 00». В чем их различие?

Система «Polylite 41O — 900» —  характеризуется усадкой смол до 1.0% в ламинате; позволяет укладывать ламинат «мокрый по мокрому»  —  до 2 мм; предусматривает в целях сокращения времени запуска оснacтки в производство проведение после 24 часов после формовки постотверждения (термостатирования) при температуре 60 — 80°С в течение пяти часов;  соотношение смола/стекло  50/50 или 60/40; время гелеобразования  до        50 мин; время полимеризации  1.5 ч; пик экзотермы  75°С; время до полного отверждения (при 20°С)  до двух недель; температура тепловой деформации ламината  130 — 1400С, что позволяет применять смолы с пиком экзотермы до 110 — 120°C.

Система «Polylite ЗЗ542 — ОО»  —  безусадочная (0.001 — 0.05%). Имеет в своем cocтaве специальный наполнитель, увеличивающий теплопроводность ламината; позволяет  укладывать eгo «мокрым по мокрому»  до 8 мм, применять на последних слоях ламината отходы (обрезки) стекломатов или cтeклотканей; изготовлять большие формы мeтодом мeстнoгo (участками) ламинирования; не требуется постотверждение, что позволяет после 16 ч с момента окончания формовки запустить оснастку в работу.

Соотношение смола/стекло  80/20 или 75/25; время гелеобразования  до 40 мин; пик экзотермы  75°С; время полимеризации  до 60 мин; время отверждения  до 3 ч; время до полного отверждения (при 20°С)  до 16 ч; температура тепловой деформации ламината —  до 1 70 —  180°с. Система применяется при производстве оснастки, предназначенной для объемных заливок; имеет значительно более высокие физико — технические свойства по сравнению с первой системой, что позволяет снизить толщину ламината или облегчить продольно — поперечный набор матрицы (корзину). Первая система дешевле второй. Обе системы мoгут наноситься как ручным методом, так и механизированным, например, с помощью аппаратов «Aplicator IPS».

Если деталь небольшая и нет необходимости торопиться, то можно применять более дорогую систему. Последнюю, как правило, используют для изготовления матриц больших габаритов, работающих под давлением, или из — за дефицита времени при запуске изделия в производство. Технология получения ламината с помощью данных систем практически одинакова. Рассмотрим ее на примере смолы «Polylite 410 — 900». Напоминаем о необходимых параметрах окружающей среды: температура среды  — 18 – 23ОС; влажность —  до 70%; скорость движения воздуха   не более 0.6 м/с. тeмпература смолы —  18 — 230С.

На поверхность отвержденного гелькоутнoгo слоя наносится мягкой кистью или специальным (для полиэфирных смол) вaликом катализированная смола «Polylite 410 — 900» (в дальнейшем просто смола) толщиной 0,3–0,4 мм. В нее добавляется кaтaлизатор в соответствии с паспортом производителя (1% пероксида «Norpol NQ1» ).

На смоченную поверхность укладывается pacкрой эмульсионнoго стекломата повеpхностной плотностью 300 м2 и  прикатывается радиальным алюминиевым валиком. Не следует после укатки торопиться наносить смолу, надо дать стекломату хорошо впитать ее с нижнего слоя. Далее валиком (или кистью) равномерно наносят остаток смолы в соотношении смола/стекло 60/40 (55/45).  Здесь очень важно правильно выбрать apмирующий материал (с учетом скорости пропитываемости и типа замасливателя).

Лучше вceгo последовать рекомендациям производителя смолы, так как он cтapaется подбирать оптимальные системы с учетом физико — механических свойств компонентов, технологичности и выходной стоимости готoвoгo изделия. Концерн «Reichhold» советует применять в данном случае эмульсионные стекломаты.

После нанесения смолы мягким валиком ламинат необходимо прикатать продольным алюминиевым валиком, далее  радиальным валиком. Укладывают второй pacкрой стекломата поверхностной плотностью 450 г/м2 и повторяют вышеуказанные операционные переходы. В результате суммapная плотность первого ламината будет 750 г/м2. При этом следует следить за тем, чтобы на последнем слое ламината перед полимеризацией не было излишков смолы, поэтому надо постоянно контролировать расход и смолы, и армирующего материала.

После полной полимеризации первого слоя ламината (через 24 ч) приступают к нанесению втopoгo слоя. Этот слой, как и последующие, закладывается с суммарной поверхностной плотностью стеклоармирующего материала по 900 —  1200 г/м2 в cooтношении смола/стекло  60/40 (44/45). Начиная с тpeтьeгo слоя ламината ткани необходимо чередовать, особенно если матрица имеет большие габариты. Для примера рассмотрим схему выклейки 1О миллиметровоrо ламината.

Толщина набора (корзины) определяется ее габаритами, формой и конструкцией. Продольно — поперечный набор должен обеспечить дополнительную жесткость мaтрице, а также снимать все деформационные напряжения при ее транспортировке и дpyгих технологических перемещениях. Набор изготавливается отдельно от матрицы. Ha пример, из водостойкой фанеры толщиной 12 —  16 мм или металлических труб различнoгo сечения. Eгo нежелательно подгонять плотно в местах сочленения с наружным контуром матрицы. В фанерной корзине оставляют зазор 3 — 5 мм и при ее установке на матрицу заполняют ППУ.

После застывания облой на стыках cpeзают и выполняют склейку матрицы и коpзины той же системой смол и по той же тexнологии. Но предварительно места нанесения соединительнoго ламината покрывают праймером и уже после eгo полной полимеризации изготовляют соединительный ламинат. Нахлыст соединительнoго ламината на поверхность матрицы и корзины должен составлять до 100 мм в зависимости от габаритов и веса оснастки, а толщина ламината —  2 — 7 мм при тех же условиях.

Корзину из металлического профиля склеивают с матрицей так, чтобы зазор был 5 — 25 мм между наружным контуром и мeталлокаркасом, с учетом габаритов, формы и веса оснастки. Допускается вклейка металлокаркаса с матрицей «в ноль», но только в оснастках для RТМ — процессов, гдe корзина проектируется по особым правилам.

Можно ли обойтись без корзины? Можно, если… (смотри таблицу). После полной полимеризации участка склейки (6 — 12 ч) приступают к расформовке готовой матрицы с мастер — модели. Но торопиться не следует. При расформовке обычно используют деревянные или из мягкого термопласта клинышки, деревянный молоток, сжатый  воздух и при необходимости подъемное устройство. При этом не рекомендуем использовать металлические предметы, нужно также избегать резких ударов и больших нагрузок на снимаемую матрицу.

После расформовки предстоит обследовать матрицу на предмет дефектов, особенно ее декоративный слой. Глубокие дефекты (1 — 5 мм) выводят филерами «Norpol FI —  75» или «- 167», неuлубокие (до 1 мм)  тем же матричным uелькоутом. Мелкие риски pacполировываются пастами «Norpol M — 50» (upyбая), «R — 10» (универсальная), «R — 40» (экстра тонкая).

После устранения всех дефектов на дeкоративный слой матрицы наносят воск «Norpol W — 70» по технолоuии, указанной выше (покрытие мастер — модели), с той лишь разницей, что данную операцию нужно повторить три — четыре раза, т. е. после yayeceния четырех слоев воска формуют три — четыре детали с «Norslipp». Далее наносят еще четыре слоя воска и снова формуют три — четыре детали с «Norslipp».

Таких циклов должно быть три — четыре, т. е. суммарное количество восковых слоев должно быть 12 — 1 6. После проведения последнеuо цикла обработка «Norslipp» уже не понадобится, поскольку декоративный слой будет насыщен воском, что позволит длительное время леuко снимать детали. Как показала практика, возможно более 500 съемов с матрицы без ее ремонта.

При работе с полиэфирными смолами и гелькоутами необходимо учитывать сроки и условия их хранения, а также смол, перекисей и других компонентов.

Сроки хранения: смол

—  «Polylite 410 — 900» и «ЗЗ542 — 00 ,,   шесть месяцев;

—  гелькоутов «Norpol СМ60014» и «СМ90000»  —  четыре месяца;

—   перекиси «Norpol №1» —  восемь мeсяцев.

Хранить указанные материалы необходимо при температуре не выше 25ОС, а перекись  не на свету, избегая прямых солнечных лучей.

Надеемся, наш опыт поможет выпускать качественный продукт и снизить накладные расходы.

ВИКТОР  ЕРШОВ, ЛЕОНИД АЛЬШИЦ.

Источник:  «Катера и Яхты» ,  №198.

20.09.2011 Posted by | строительство, технология | , , , , , , , , , , , , | Оставьте комментарий

profiinvestor.com

Инвестиции и заработок в интернет

SunKissed

мое вдохновение

The WordPress.com Blog

The latest news on WordPress.com and the WordPress community.

Домашняя яхт-верфь.

Сайт создан для тех, кто мечтает построить яхту своими руками - яхту своей мечты...

Twenty Fourteen

A beautiful magazine theme