Домашняя яхт-верфь.

Сайт создан для тех, кто мечтает построить яхту своими руками — яхту своей мечты…

Радары для малого флота.

экран-ра-ар а-00

В «КиЯ»  №169 мы познакомили вас с принципами построения навигационных систем на основе концепции и протокола обмена SeaTalk и с несколькими сериями системообразующих элементов — лагами, эхолотами, электронными компасами и прочими, крайне необходимыми для парусных и моторных судов приборами.  Сейчас же речь пойдет о наиболее сложных приборах, созданных с использованием современных высоких технологий: с судовыми радиолокаторами, или, как их еще называют, радарами. Радиолокаторы — детище противовоздушной обороны, впервые появились на военных кораблях в годы Второй мировой войны и первоначально использовались для обнаружения воздушных и надводных целей.

Обладая высокими по тем временам возможностями, они, тем не менее, оказались не востребованными гражданским флотом — громоздкие и недостаточно надежные, они занимали слишком много места на транспортных и пассажирских судах и, главное, требовали для эксплуатации специально обученного и многочисленного персонала.

Судовой радиолокатор прописался в ходовой рубке гражданских судов лишь после освоения диапазона волн длиной 3 см, применение которых позволило резко сократить размеры антенн и приемо передающих устройств, и появления новых электронных компонентов, существенно повысивших надежность радара и предельно упростивших его эксплуатацию.

В течение долгого времени использованию радиолокации на яхтах, даже достаточно крупных, препятствовали неприемлемо большие размеры и энергопотребление существующих радаров. Возможность их установки на относительно небольшие суда появилась лишь после широкого внедрения микроэлектроники.

В первую очередь — твердотельных СВЧ приборов, микропроцессоров и больших жидкокристаллических матриц (экранов), позволивших, в сочетании с современными методами обработки сигналов, получить компактные, надежные, экономичные и удобные в эксплуатации даже на небольшом судне радары.

Прежде чем переходить к обзору конкретных приборов, кратко познакомимся с основными элементами и принципами работы радиолокатора.

Назначение и работу радиолокатора хорошо иллюстрирует пришедшее из за океана широко распространенное название — радар (RADAR) — аббревиатура слов: Radio Detection And Ranging — радиообнаружение и измерение дальности.

Любой радиолокатор имеет три основных элемента — сканирующую антенну, приемопередатчик и дисплей (рис.1). В современных судовых радарах два первых элемента объединяются в отдельный модуль, обычно называемый сканером.

При работе вращающаяся в горизонтальной плоскости антенна радара излучает вырабатываемые передатчиком короткие высокочастотные импульсы (так называемые “зондирующие импульсы”) и принимает отраженные от различных объектов сигналы.

0014

Приемник выделяет отраженные сигналы из шумов и передает их на дисплей, в котором осуществляется их обработка и отображение окружающего пространства на экране индикатора кругового обзора.

Наблюдая на экране радиолокационную обстановку вокруг судна, оператор производит визуальное обнаружение целей (под целью в радиолокации понимается любой обнаруженный радаром объект), измерение их дальности и азимута относительно судна и управление работой радара.

Основные характеристики радаров.

Функциональные возможности радиолокатора определяются рядом характеристик, понимание которых позволяет сделать правильный выбор аппарата, в той или иной степени удовлетворяющего потребностям владельца именно этого судна. Познакомимся с некоторыми из них.

Дальность действия. Дальность действия радара, указываемая в его паспортных данных — это его важнейший, но далеко не однозначный показатель, и в реальных условиях дальность обнаружения различных целей не всегда будет совпадать с заявленной.

Дальность обнаружения зависит от многих факторов — отражательной способности цели (характеризуемой так называемой ЭПР — эффективной поверхностью рассеивания), ее контрастностью по отношению к фону, высотой антенны и цели, состоянием атмосферы и моря.

Поэтому данная характеристика задается дифференцированно по типам целей и условиям работы радара. В соответствии с требованиями Международной Морской Организации(IMO), при нормальных условиях распространения радиоволн, высоте установки антенны РЛС 15 м над уровнем воды и при отсутствии помех от моря, РЛС должна обеспечивать четкую индикацию:

  1. Береговой черты: при высоте берега до 60 м — на расстоянии до 20 морских миль; при высоте берега до 6 м — на расстоянии до 7 морских миль.
  2. Надводных объектов: — судов валовой вместимостью 5000 т — на расстоянии 7 морских миль независимо от ракурса; — небольшого судна длиной 10 м — на расстоянии 3 морских миль; — объектов, аналогичных навигационному бую, имеющих ЭПР приблизительно 10 м2 — на расстоянии 2 морских миль.

Поскольку обнаружение целей возможно только при наличии прямой видимости, то, зная высоту установки антенны радара и ориентировочную высоту цели, можно определить предельную дальность ее обнаружения в морских милях, пользуясь известным выражением:

Rmax = 2.2 (gh1+gh2),

где h1 и h2 — высота установки антенны и высота цели над уровнем моря. Обычно в паспортных данных на судовые радары приводят максимальную (инструментальную) дальность, составляющую для подавляющего большинства компактных яхтенных радаров 16 морских миль.

00200

В реальных условиях радиолокационное наблюдение ведется, как правило, на меньших расстояниях, определяемых потребностями судовождения. В этих случаях использование развертки экрана с максимальной дальностью не целесообразно, так как это приводит к существенной избыточности информации и к уменьшению размеров цели, что затрудняет ее обнаружение.

Поэтому в радарах существует несколько так называемых шкал дальности — значений, в пределах которых может работать радар. Например, популярный среди владельцев небольших судов радар «Raytheon SL72»  имеет следующий набор шкал:

Дальность (миль): 0.125; 0.25; 0.5; 0.75; 1.5; 3.0; 6.0; 12; 24 Такое большое количество шкал позволяет получать и общее представление об окружающем пространстве на больших расстояниях, и детальное радиолокационное изображение на дальностях, представляющих наибольший интерес с точки зрения обе спечения безопасности плавания.

Кроме того, в некоторых радарах имеется возможность выделения и просмотра отдельных участков окружающего пространства в укрупненном масштабе. Ошибки определения координат цели. Для любого навигационного прибора, определяющего местоположение, важнейшим показателем является ошибка определения местоположения.

Судовой радар определяет две координаты цели: дальность относительно антенны и направление (азимут) относительно линии направления (истинного, магнитного, направления движения). Ошибка определения расстояния портативных радаров обычно составляет (0.9 ÷ 1)% максимального значения используемой шкалы дальности, ошибка определения направления  ±1°.

00300

Скорость вращения антенны. Этот параметр определяет скорость обновления информации на экране радара и особенно важен при управлении скоростными судами.

Скорости вращения антенн портативных радаров достаточно высокие: у уже известных нам «SL72» и «SL74» она составляет 27 об./мин., а у некоторых аналогичных (например, у «JRC Radar 1000») и более, что позволяет использовать их на всех доступных скоростях передвижения по воде.

Функциональные возможности.

Функциональные возможности радаров определяют удобство работы с прибором и способность получения той или иной информации. Для понимания того, что может современный радар, снова обратимся к нашему знакомому «SL72», а точнее — к работе с ним.

Обнаружение целей. Обнаружение любых объектов осуществляется визуально на экране локатора. Небольшие объекты — суда, буи, островки — отображаются в виде ярких точек на фоне различных помех, возникающих от собственных шумов приемника, от волн и атмосферных осадков, маскирующих отметки от целей.

Для выделения отметок от целей на фоне помех в судовых радарах предусмотрены различные функции — регулировка усиления приемника, подавление отражений от волн и дождя, расширение отметки (введение так называемого «следа эхо») и ряда других ухищрений.

Определение координат. Как yже oтмечaлocь, судовой радиолокатор определяет две координаты в своей местной системе — дальность и азимут относительно судна.

Измерение дальности. Дальность до цели может определяться тремя способами — при помощи колец дальности, при помощи курсора и при помощи маркера переменного расстояния VRM.

Если посмотреть на экран радара, первое, что бросается в глаза — это находящиеся на нем концентрические кольца. Количество колец и расстояния между ними жестко связаны с используемыми шкалами дальности.

Для измерения расстояния до цели достаточно подсчитать количество колец между ее отметкой и центром экрана, умножить это число на расстояние между кольцами и прибавить оцененное на глаз приблизительное расстояние отметки от внутренней кромки ближайшего по направлению к центру кольца.

00400

Понятно, что такой способ дает наглядную и быструю, но весьма грубую оценку, поэтому для получения точных значений используют два других способа.

Курсор — это отметка на экране в виде перекрестия, управляемая при помощи клавиш или трекбола. Чтобы измерить дальность до цели, достаточно поместить перекрестие на внутреннюю кромку отметки, после чего искомое значение вместе со значением азимута высветится в углу экрана.

Подвижный маркер расстояний VRM — это кольцо на экране, радиус которого может выбираться оператором. Изменяя величину радиуса, совместим наружную кромку кольца с внутренней границей отметки цели — и вы получите значение расстояния до цели, высвеченное в углу экрана.

Измерение направления. Направление отсчитывается от курсовой линии — вертикальной линии на экране, совпадающей с диаметральной плоскостью судна. При наличии магнитного компаса или гирокомпаса, сопрягаемых с радаром, отсчет азимута может осуществляться от магнитного или истинного направления на Север.

Измерение направления может осуществляться при помощи курсора (аналогично измерению дальности) либо с использованием линии электронного маркера пеленга EBL. Электронный маркер пеленга EBL — это исходящая из цент ра экрана линия (иногда называемая «линией электронного пеленга»), положение которой может управляться оператором.

При помощи органов управления наводят маркер на середину отметки, после чего считывают высвеченные в углу экрана значения азимута, либо получают их по шкале направлений, находящейся на краю экрана.

Определение координат — широты и долготы цели. При сопряжении с приемником спутниковой навигации или приемоиндикатором радионавигационных систем «Лоран» или «Декка» радар может определять и высвечивать на экране широту и долготу выбранных целей.

Помимо решения основных задач — обнаружения и определения координат целей — современные радиолокаторы обладают набором функций, существенно расширяющих их возможности. Познакомиться с ними мы можем на примере радара «Raytheon SL72».

Выбор этой модели объясняется тем, что она входит в комплект информационно сопрягаемых в формате «SeaTalk» приборов «Raytheon», представленных в «КиЯ» № 169. Но для начала познакомимся с прибором.

Радиолокатор SL72 состоит из двух элементов — дисплея «SL70»  с 7 дюймовым (17.5 см по диагонали) жидкокристаллическим экраном и закрытым 18 дюймовым (47 см в диаметре) сканером, обеспечивающим дальность действия 24 мили.

Дисплей «SL70» может работать также с более солидным 24 дюймовым сканером с дальностью действия 48 миль — та кая модель имеет название «SL74».

При взгляде на переднюю панель радара бросается в глаза полное отсутствие каких либо рукояток настройки и переключателей — все управление и настройки осуществляются клавишами с использованием экранных транспарантов и меню.

00500

Характерной особенностью «SL72» является многооконный режим работы дисплея. Помимо основного радиолокационного изображения в нижней части экрана располагаются так называемые «Data Boxes» — окна, в которых находится навигационная информация, получаемая от связанных с радаром датчиков — компаса, приемника GPS, эхолота, лага, а также данные о положении на экране курсора и маркеров направления и дальности (рис.2).

При помощи дополнительных экранных окон можно выделить сектор контроля, положение курсора, получить графическое изображение «Highway», используемое в приемниках GPS для судовождения по путевым точкам и маршрутам.

И, наконец, можно наблюдать общую радиолокационную картину одновременно с выделенным и растянутым участком находящегося на экране пространства. Однако этим не исчерпываются все возможности полиэкрана — созданный на базе дисплея «SL70» радар чартплоттер     «RL72RC» позволяет получать на экране электронную карту, радиолокационную картину окружающего пространства, а также оба изображения одновременно (рис.3).

При этом при работе в режиме чартплоттера выполняются все присущие ему функции — отображение карты, обозначение своего места и трассы движения, путевые точки и маршруты, характеристики движения и пр.

Интерфейс судовых радиолокаторов позволяет использовать их в составе навигационных систем, имеющих единый международный протокол обмена «NMEA 0183». Радары «SL72» и «RL72RC», в отличие от других, имеют еще и протокол обмена «SeaTalk», что позволяет сопрягать их с приборами «Autohelm» и «Raytheon», получать от них и отображать на экране большой объем навигационной информации.

Оттяжка-гика-на-яхте

В настоящее время производители судовой радиоэлектроники выпускают большое количество моделей радиолокаторов для малого флота. В прилагаемой таблице приведены сравнительные характеристики некоторых наиболее распространенных в нашей стране радаров.

На более крупных судах, не столь стесненных объемом помещений и возможностями источников электропитания, используются компактные радары с дисплеями на электронно лучевыхтрубках, обладающие более крупными и яркими экранами с высокой разрешающей способностью («Raytheon R70» и «JRC Radar 2000» с 7 дюймовым экраном; «JRC JMA 2253» и «Furuno М 1832» с 10 дюймовыми экранами).

При выборе радиолокатора для своего судна следует иметь в виду, что для его приобретения необходимо получить разрешение Главного управления по надзору за связью в РФ (Госсвязьнадзор), при этом прибор должен иметь Сертификаты Службы Морского Флота и Регистра Морского Судоходства РФ.

В.Евстратов, г. Москва.

Источник:  «Катера и Яхты»,  №171.

08.01.2015 Posted by | Навигация | , , , , | Оставьте комментарий

Компьютер проектирует яхту.

В судостроении 80 — x гг. ЭВМ стала неотъемлемым элементом дизайнерскoгo бюро как средство, способное облегчить наиболее трудоемкие зтапы проектирования. Одна из наиболее интересных задач, которую позволяет решить компьютер, — проектирование корпуса судна (создание теоретического чертежа, таблицы ординат). Однако получившие широкое распространение системы проектирования ориентированы прежде вceгo на крупные суда и малопригодны для специфических корпусов «мaлого» судостроения. Поэтому тем, кто занимается проектированием яхт, трудно воспользоваться apсеналом «большого» судостроения, и приходится искать свои средства, что называется, «с нуля».

В основе любой системы проектирования корпуса судна лежит математическая модель eгo поверхности. Для создания такой модели обычно применяют два подхода:

—  задается некоторое количество точек в пространстве, которые определяют искомую поверхность (например, таблица ординат должна определять поверхность корпуса соответствующего судна);

—  подбирается функция от двух переменных (например, тeoретический шпангоут и высота от ОП) с множеством параметров (длина, ширина, осадка…), гpaфик которой, построенный в пространстве, может соотвeтствовать поверхности корпуса судна.

Непосредственно теоретический чертеж получают с помощью графопостроителя — чертежного автомата. В первом случае npoгpaммa должна найти закономерность размещения заданных точек и обеспечить возможность получить любые промежуточные координаты точек. Для этой цели чаще вceгo используется апроксимация кубическими сплайнами. Кубическим сплайном называется мaтематическая функция. Благодаря многообразию кривых, которые можно получить с ее помощью, она пользуется в настоящее время все большей популярностью. Само слово «сплайн» происходит от английского нaзвания гибких реек, издавна применяемых в черчении. К достоинствам этого метода можно отнести завидную универсальность: исходные точки мoгут определять любые формы.

Однако описанный таким образом простой корпус яхты может определяться 30 — 300 точками, а каждая из таких точек тремя координатами. Итого от 90 до 900 чисел! При таком количестве исходных данных легко ошибиться или снять координаты точек с предварительного чертежа недостаточно точно, и на корпусе (если он будет напоминать корпус) появятся «пузыри» и «вмятины». Чтобы убрать все дефекты, требуется активная и продолжительная работа с ЭВМ.  Сглаживающие сплайны хотя и помогают отчасти избавиться от этих трудностей, но дизайнеру становится труднее выдepжать некоторые, наперед заданные, точные размеры.

Приведенные здесь рисунки корпуса с палубой демонстрируют возможности тaкoгo рода пpoгpaмм. Исходные данные заданы в виде последовательностей трех координат (Х, У и Z) «управляющих» точек. Эти точки определяют линии, наиболее xapaктерные для дaннoгo объекта. Столь простое задание позволяет в дальнейшей работе достаточно вольно обращаться с исходными данными. Так, умножив любую из координат, например, на два, мы «растянем» объект в направлении этой координаты в два раза. Аналогичным образом объект можно «двигать» и «поворачнвать».

Затраты времени на разработку новой математической модели поверхности вполне приемлемы. На создание предварительнoгo эскиза яхты, представленной на стр. 31, 32, уходит до 10 часов, на непосредственную работу с ЭВМ —  до 6 часов. Микро — ЭВМ, не самой большой производительности, обрабатывала исходные данные и промежуточные peзультаты в сумме 1 — 2 часа. Современный графопостронтель рисует одну картину 2 — 15 минут (в зависимости от масштаба и сложности).

Второй из упомянутых способов проектирования корпуса кoгдa подбирается функция, описывающая поверхность в цeлом  называется генерацией теоретического чертежа. Он основан на том, что выделяются наиболее xapaктерные элементы формы: линия борта, палубы, шпангоутов, ватерлиний, cкeгa и перегиба в корме.

После тщательного изучения архитектурных особенностей гoночных яхт разных классов последних лет мною были подобраны функции, которые мoгyт служить моделями этих линий. Прогpaммa генерации теоретического чертежа яхт получилась, кoгдa была организована единая функция ординат корпуса от положения шпангоута по длине и высоты от ОП, связанная со всеми заданными элементами корпуса.

Специализированная прогpaммa генерации теоретического чертежа требует меньшего количества исходных данных (20 — 50 чисел), и, чтобы получить таблицу ординат новoгo корпуса, иногда бывает достаточно изменить 2 — 3 значения (например, главные размерения). Диапазон изменений достаточно широк: удавалось рисовать корпуса в стиле 12 — мeтpoвиков, катамаранов, швертботов и даже глиссирующих —  остроскулых. Приведенный выше рисунок, выполненный с помощью графопостроителя, иллюстрирует наиболее тнпичную продукцию такой пpoгpaммы.

И. ИСАКОВ.

Источник:  «Катера и яхты»,  №127.

21.07.2011 Posted by | CAD-проектирование, яхтенный дизайн | , , , , , , , , , , , , , , , , , , | Оставьте комментарий

   

profiinvestor.com

Инвестиции и заработок в интернет

SunKissed

мое вдохновение

The WordPress.com Blog

The latest news on WordPress.com and the WordPress community.

Домашняя яхт-верфь.

Сайт создан для тех, кто мечтает построить яхту своими руками - яхту своей мечты...

Twenty Fourteen

A beautiful magazine theme