Домашняя яхт-верфь.

Сайт создан для тех, кто мечтает построить яхту своими руками — яхту своей мечты…

Рейсмусный портативный станок – помощник судостроителя — любителя.

Тот, кто сталкивался с обработкой дерева,  хорошо знает, что при помощи рубанка можно сделать практически из любого куска дерева деталь с параллельными противостоящими плоскостями. Но для этого иногда необходимо потратить много сил и времени. Чтобы ускорить процесс или обработать большое количество материала, лучше воспользоваться «мобильным» рейсмусным станком.

Сегодня на российском рынке выбор небольших рейсмусных станков достаточно большой, не столь обширный, как, к примеру, рубанков, однако есть из чего выбрать. Станки предлагаются как российских, китайских, так и японских, европейских и американских производителей. Многие фирмы, чьи штаб-квартиры находятся в Европе и США, производят сегодня станки в Поднебесной и близлежащих странах.

Отечественные производители вот уже пару лет как тоже потянулись в сторону прибрежного Китая. Это не хорошо и не плохо, это факт, с которым приходится мириться. Некоторый собственный опыт общения с «рейсмусами», а также опыт знакомых, говорят, что станок, произведенный в Китае  или на Тайване, долго и хорошо работает.

Правда, если Тайвань – это всегда неплохо (по отношению к произведенной технике), то «чистый» Китай пока еще не вышел на должный уровень. Станки каких зарубежных фирм наиболее распространены сейчас в России?  Это «Makita», «Metabo», «Hitachi», «JET», «DeWalt». Среди российских производителей наиболее известны «Корвет» («Энкор»), «Кратон» и т.д.

Как правильно выбрать «рейсмус»?  Первым делом надо определить, насколько он нужен и какие объемы дерева предполагается обрабатывать. Если вы планируете работать пять дней в неделю по четырепять часов, то, скорее всего, портативный «рейсмус» – не вариант. В этом случае лучше обратить свои взоры на стационарные тяжелые станки с большими возможностями.

Небольшой рейсмусный станок – находка для тех, кто сравнительно часто имеет дело с работами по дереву, допустим, на собственном участке (в деревне), у кого есть своя небольшая мастерская или  желание упростить постройку деревянной лодки, используя неподготовленные доски, бруски и т.д. Словом, портативный рейсмусный станок имеет смысл приобретать, когда речь идет об обработке до двух-трех кубометров пиломатериалов в месяц или когда необходимо перевозить станок с места на место.

Мобильный станок хорош для различного рода ремонтов «на выезде», так как его можно перевозить даже в обычном легковом автомобиле. При этом качество обработки дерева у «малышей» очень высокое, особенно, если хорошо освоить навыки работы и готовить дерево перед обработкой.

Несмотря на то, что принцип работы «рейсмуса» очень похож на «рубаночный», между ними все же есть несколько кардинальных отличий. Если вам предлагают «рейсмус» с ручной подачей, то от такого станка лучше отказаться: мало того, что к нему надо будет  привыкнуть, так еще одному на таком станке при обработке длинных досок и брусков просто не справиться.

Современные «рейсмусы» имеют автоматическую подачу со скоростью от 7 до 9 м/с, которая обеспечивается специальными валами и гарантирует высокую точность и хорошую чистоту обработки. Именно «автомат» позволяет обрабатывать длинные доски (бруски, рейки) в одиночку, а это значит, что  при выборе станка стоит посмотреть на «наличие подачи» и исполнение самого механизма.

Важным моментом является возможность быстрой замены рабочих ножей, хотя это не столь принципиально, однако, чем проще заменять режущие ножи (лезвия), тем легче «общаться» со станком. На «рейсмусах» одни производители устанавливают лезвия из быстрорежущей стали, другие – лезвия, которые можно затачивать.

Цена на лезвия (комплект) колеблется от 700 до 2000 руб. в зависимости от производителя и жадности продавца. Как правило, «родных» лезвий (японских, тайваньских и т.д.) хватает надолго. Опыт показывает, что на «рейсмусе» «Makita 2012» лезвия требуется заменять после обработки 6–8 кубометров сосновых заготовок, но для этого достаточно их перевернуть и закрепить в барабане – эти  лезвия двухсторонние.

При обработке твердых пород дерева ресурс ножей, разумеется, уменьшается. Снижается ресурс ножей и приводных барабанов также, если древесину не подготовить к обработке, т.е. не убрать с поверхности материала абразивные частицы (песок, крупная пыль и т.д.), и не очистить ее от смолы. Иногда имеет смысл пройти рубанком верхний слой на глубину до одного миллиметра.

Практически ко всем «рейсмусам» можно подключить стружкоотсос (стружкосос). Его целесообразно использовать не только в стесненных мастерских, но и на улице,  поскольку позволяет быстро собрать стружку в мешки (коробки и т.д.), и она не разлетится по округе. При большом объеме работ это становится актуальным. Не стоит забывать, что стружка (опилки) – желанное сырье для многих дачников. Бизнес, конечно, на нем не сделать, но почему бы не порадовать соседей по «фазенде»…

Все «рейсмусы», за исключением одной модели («Hitachi P13F») не имеют ни столов, ни подставок, поэтому стоит сразу озаботиться их изготовлением  либо покупкой специального верстака (если таковые в хозяйстве отсутствуют). По опыту, достаточно простого стола с крепкой основой, который можно использовать как верстак.

При обработке длинных заготовок (более 3 м) придется устанавливать специальные «подпорки», по которым должны скользить заготовки (либо катиться по валикам). В противном случае возможен не только брак при обработке (ступеньки на концах заготовок), но также повышенный износ валов привода и стоек станка. К чему это я все?  А к тому, что покупкой одного станка не отделаться.

Где покупать?  Сегодня очень активны Интернет-магазины, которые имеют службу доставки. Однако «рейсмус» стоит покупать только в том случае, если есть возможно детально его осмотреть. Особенно это касается станков отечественного и «непонятного» производства. Запустить мотор и хотя бы визуально осмотреть все, что доступно глазу,  не помешает. Поэтому целесообразно сделать заказ по Интернету, а забирать станок самовывозом».

Покупка в обычном магазине, разумеется, не возбраняется, хотя цены в них по сравнению с Интернет-магазином могут быть выше на 10–20%.Небольшое наблюдение: при покупке рейсмусного станка пришлось пообщаться со многими виртуальными магазинами, в результате чего остался какой-то осадок.

Похоже,  некоторые магазины «виртуального характера», получив заказ,   начинают  лихорадочно его искать у крупных поставщиков, накидывая при этом свою «дельту» в размере 10–15%. То есть в наличии конкретного станка у них нет (на складе, в офисе и т.д.), но они знают, где его можно купить и как перепродать.

Пару слов о процессе выбора сказать все-таки придется. Первым делом надо смотреть модели, которые имеют хорошее обслуживание и к ней можно быстро и без проблем приобрести расходный материал. Возможности  всех предлагаемых на рынке «рейсмусов» (максимальная ширина прохода, толщина заготовки, скорость подачи и т.д.) более или менее схожи, но есть и различия.

Если «рейсмусы» «Makita» и «Metabo»  близки даже идеологически, то «Hitachi», к примеру, имеет немного другую конструкцию, что надо учитывать. Но это уже тема отдельного разговора, более конкретного. Иногда электрооборудование к нам попадает «странными» путями, поэтому надо внимательно изучить характеристики станка и сравнить их с данными аналогичного станка, поставляемого в Европу (нужную информацию  можно найти на официальных сайтах фирм — производителей или на форумах).

Часто подмену можно определить по выключателям,  не соответствующим европейским нормам.  Новички, решившие заняться  обработкой дерева, смогут найти много полезной информации на  forum.woodtools.ru  и там же пообщаться с единомышленниками.

Игорь Владимиров.

Источник:  «Катера и Яхты»,  №232.

16.12.2011 Posted by | Инструменты. | , , , , , , , , | Оставьте комментарий

Сборка корпуса судна на стапеле.

Одным из важнейших моментов при строительстве судна, является сборка корпуса судна на стапеле. От точности и качества выполнения этих работ зависят   все будущие качества судна. Для сборки корпуса нужно иметь точный «адрес» всех изготовленных деталей, инструменты для проверки и строго фиксированную базу, от которой можно отсчитывать все раз меры с точностью до миллиметра Судостроители применяют простые, но достаточно надежные проверочные средства: отвес — для контроля вертикальности, шланговый уровень или ватерпас — для контроля горизонтальности, метр или рулетку.

Собирать корпус в зависимости от его конструкции можно разными способами: на лекалах или шпангоутных рамах, в нормальном положении или вверх килем. Познакомимся с общей последовательностью сборки кругло — скулого корпуса, такого, например, как «Тюлень» или «Белуха», с гнутыми шпангоутами и обшивкой из досок.

Базой для общей сборки и проверки положения корпуса служит стапель. В самом общем виде (рис. 61) это жесткий продольный брус 8 с прямой и строго горизонтальной плоскостью, с которой должна совпадать основная плоскость теоретического чертежа. К брусу крепятся две вертикальные стойки 4, соединяемые верхним стапельным брусом.

На стапеле отбивают по туго натянутой струне 3 линию диаметральной плоскости, а затем размечают положение шпангоутов — все в строгом соответствии с теоретическим чертежом. На стойках наносят положение контрольных ватерлиний.

На стапельном брусе закладывают киль 6 с форштевнем 9 и транцем 5 и размечают места установки шпангоутов, на которых закрепляют лекала 7 при помощи распорок 2. Закладка образует продольный килевой контур судна. Если теперь на нее поставить лекала всех теоретических шпангоутов, то получится как бы скелетная модель судна, но без ватерлиний и батоксов; эти линии при постройке судна не воспроизводятся, но их можно провести на поверхности обшивки.

Наружный контур лекала должен быть смещен внутрь относительно обвода теоретического шпангоута на толщину обшивки, а его конструкция — быть достаточно прочной и жесткой, чтобы по нему можно было изгибать рейки или доски обшивки (особенно если оно будет использовано для постройки ряда однотипных судов).

Контур лекала судостроители получают очень просто. Например, выкладывают на плазе гвоздики шляпками по обводу шпангоута (половину шляпки, прилегающую к плазу, надо предварительно сточить), а сверху кладут доску — заготовку лекала и прижимают ее к полу (рис. 62). Полученные на заготовке оттиски шляпок соединяют по рейке плавной кривой.

Обрезают лекало по этой кривой и проверяют его еще раз по плазу. Одновременно на лекало на плазе переносят и положение всех необходимых для его установки контрольных отметок. Это отметка 2 линии ДП (рис. 63), контрольные риски линии борта 6 и ватерлинии 7. Если судно собирается в положении вверх килем, на плазовом чертеже на проекции «Корпус» должна быть пробита параллельная основной плоскости шергень-линия, которая является как бы основанием для установки лекал на стапеле.

В этом случае к каждому лекалу прибивается шергень-планка 5, тщательно простроганная кромка которой при сборке лекала совмещается с шергень-линией на плазовом чертеже.

Лекало ставят на уже закрепленную на стапеле 9 закладку 10 точно по отметкам шпангоутов. Напомним, что носовые от миделя лекала ставят так, чтобы их толщина располагалась в нос от теоретических линий шпангоутов, а кормовые лекала — толщиной в корму. Это делается для того, чтобы впоследствии с кромок лекал можно было бы снять скос — малку— для плотного прилегания досок обшивки, не нарушая заданных плазом очертаний шпангоута. Каждое лекало крепится распорками / к верхнему брусу 3 стапеля 9.

Линия ДП на лекале должна быть совмещена с линией ДП на стапеле или на киле закладки. Вертикальность лекал контролируется при помощи отвеса 4, кроме того, шланговым уровнем 11 проверяется горизонтальность положения прочерченных на нем контрольных ватерлиний или шергень -линий.

Когда все лекала поставлены и закреплены, по верхней кромке шергень -планок в ДП натягивают стальную струну; естественно, риски ДП на всех лекалах должны лежать точно под этой струной. Нужно еще убедиться в том, что плоскости лекал строго параллельны. Для этого берут длинную рейку (на всю длину судна) и огибают ею лекала одного борта на уровне палубы от форштевня до транца.

Отмечают карандашом положение передних граней всех лекал, а затем ту же рейку прикладывают на той же высоте с противоположного борта. Если карандашные риски на рейке и передние грани лекал при этом не совпадают, лекала требуется выровнять.

Только теперь строитель ощущает настоящие размеры и видит обводы будущего судна; перед ним уже не плоский лист чертежа или плаз, а выставленный набор лекал, задающий пространственную форму корпуса. Можно оценить и качество проделанной работы. Любая погрешность обнаруживается при помощи той — же упругой рейки: приложенная вдоль корпуса на любой высоте, она должна плотно прилегать сразу ко всем лекалам.

Обычно четыре-пять таких реек (их называют рыбинами) временно крепят с обоих бортов к лекалам и к форштевню; по ним снимают малку с лекал, подготовляя таким образом каркас для крепления обшивки (рис. 64—66).

По выставленным и проверенным лекалам набирают дощатую или реечную обшивку. В полученную скорлупу корпуса через каждые 150—360 мм вставляют шпангоуты (в зависимости от размеров судна), которыми связываются отдельные поясья обшивки в единую оболочку. Места их установки размечают на киле и на бортах внутри корпуса.

Когда все шпангоуты выставлены на место, лекала вынимают из корпуса (они могут быть использованы для постройки последующих однотипных лодок) и заменяют их распорками между бортами Окончательную жесткость верхним кромкам бортов придают внутренние привальные брусья, которые ставят на верхние концы шпангоутов и надежно скрепляют с ними.

Если судно имеет палубу, те же привальные брусья служат опорами для бимсов палубного настила; у открытого судна борт заканчивается планширем. Установкой переборок и фундамента под двигатель заканчивается постройка собственно корпуса.

При сборке корпуса вверх килем (этот способ чаще всего применяется при постройке остроскулых судов с фанерной обшивкой) крепление лекал к стапелю осуществляется проще — без верхнего бруса и раскосов. Лекалами для остроскулого корпуса служат предварительно собранные в рамки шпангоуты. По горизонту стапель выверяется не только в продольном направлении, но и в поперечном, так чтобы ДП шпангоутов была перпендикулярна основной плоскости. Бортовые ветви каждого шпангоута соединяют шергень-планками.

Верхняя отфугованная кромка всех шергень -планок находится от основной плоскости на одном и том же уровне, который выбирают так, чтобы удобно было крепить детали набора на стапеле. Бортовые ветви шпангоутов при этом часто приходится делать длиннее, чем высота борта.  По окончании сборки их подпиливают точно по линии борта и освобождают корпус от стапеля.

Если судно имеет палубу, удобно шпангоуты ставить на стапель не на шергень — планках, а на стойках (см. рис. 209). Однако и в этом случае на шпангоуты следует нанести горизонтальную линию (это может быть одна из ватерлиний) для контроля их при установке на стапель.

На стапель ставят сначала средний шпангоут (мидель-шпангоут) и тщательно выверяют его положение в вертикальной плоскости отвесом. Перпендикулярность относительно ДП, обозначенной стальной струной, натянутой на стапеле, можно проверить, замерив рейкой расстояние от какой-либо точки на этой струне до точки пересечения шергень-линии с внешней кромкой шпангоута на одном и на другом борту.

При правильной установке шпангоута оба расстояния должны быть одинаковыми. Затем в нос и в корму ставят остальные шпангоуты. Так же как и при постройке круглоскулых судов, нужно с помощью реек-рыбин проверить плавность обводов.

Когда шпангоуты закреплены и проверены, на них размечают положение скуловых и днищевых стрингеров, привальных брусьев и киля. Заготовленные рейки продольного набора временно пришивают гвоздями на своих местах, причерчивают к шпангоутам, на которых затем надпиливают ножовкой и аккуратно выбирают стамеской гнезда. Лучше гнезда делать по ширине несколько меньше, так чтобы рейка входила в них с натягом.

Для удобства работы киль, форштевень и кормовую кницу собирают в одну закладку. Киль крепят к каждому шпангоуту на клею и шурупах; конец форштевня прикрепляют к стапелю. Иногда киль и скуловые стрингеры крепят к шпангоутам на болтах с помощью металлических угольников (рис. 67). Подтянув струбцинами киль к шпангоутам, прикладывают к месту соединения угольник, через отверстия в нем просверливают шпангоут, ставят и затягивают болты.

Затем через отверстия в другой полке угольника просверливают отверстия в киле, разделывают снаружи эти отверстия под головки болтов, забивают болты снаружи и затягивают гайки. Так же поступают и со скуловыми стрингерами.

Когда рейки продольного набора поставлены, рубанком снимают малку — сострагивают выступающие кромки шпангоутов до плотного прилегания обшивки к набору. Для контроля прикладывают под разными углами к набору широкую полосу фанеры длиной 1,5 м, которая должна плотно прилегать к шпангоутам по всей их толщине.

Грань шпангоута, совпадающую с теоретической линией, строгать нельзя — это может изменить обводы корпуса и образовать на нем провал. Меньше всего приходится малковать шпангоуты в средней части, больше — в носу и в корме. В оконечностях делают малку также на киле, форштевне, а иногда даже и на кнопе.

Кницы и флоры рекомендуется не доводить до кромки шпангоутов на 4—5 мм, чтобы при снятии малки избежать их расщепления. Все головки шурупов, заклепок и болтов, которые ставятся со стороны набора, прилегающей к обшивке, должны быть достаточно утоплены в древесину, чтобы не мешать снятию малки.

Источник:  Д. А. Курбатов.  «15 проектов судов для любительской постройки.»

16.12.2011 Posted by | дерево, строительство, технология | , , , , , , , , , | Оставьте комментарий

Постройка деревянных судов. Клеи и склеивание.

Для склеивания основных деталей корпуса: форштевней, обшивки, палубы и т. п. — необходимы водостойкие смоляные клеи, такие. как ВИАМ Б-3, КБ-3, КДМ-5, эпоксидные.

Клей ВИАМ Б-3.

Состоит из фенолобаритовой смолы ВИАМ Б, которую перед склеиванием разжижают техническим ацетоном или спиртом-сырцом и добавляют в нее керосиновый контакт (контакт Петрова), являющийся отвердителем. При приготовлении клея в смолу (100 вес. ч.) вливают сначала ацетон или спирт (10 вес. ч.), а затем керосиновый контакт (16—20 вес. ч.) и перемешивают в течение 10—15 мин до получения однородной смеси. Клей, приготовленный таким образом, годен к употреблению в течение 2—4 час. При работе с ним следует иметь в виду, что смола содержит фенол — токсичное вещество, вредно действующее на кожу и органы дыхания.

Клей КБ-3.

Благодаря малому содержанию .свободного фенола безопасен для работы. Для холодного отверждения он приготовляется из 100 вес. ч. фенолоформальдегидной смолы Б и 26 вес. ч. керосинового контакта.

Эпоксидны й клей.

Пригоден для склеивания металла, древесины и пластмасс. Его основной частью является эпоксидная смола ЭД-5 (100 вес. ч.), отвердитель — полиэтил енполиамин (6,5 вес. ч.). Приготовляют клей небольшими порциями (он действует в тетечении 45-75 мин) Вливая в смолу полиэтилен полиамин и тщательно перемешивая смесь в течение 5—7 мин. Если клей получается слишком вязким, в него можно ввести немного растворителя — толуола, ацетона или спирта. Для склеивания корпусных деталей можно применять также эпоксидный компаунд К-153 и чехословацкую эпоксидную смолу «Эпокси-2000».

Кле й К-17.

Приготовляют из смеси мочевиноформальдегидной смолы МФ-17 (100 вес. ч.) с древесной мукой (8 вес. ч.); отвердителем служит 10%-ный раствор щавелевой кислоты в воде. Количество воды регулируется в зависимости от требуемой вязкости клеевого раствора. Клей применяют после тщательного перемешивания; действует он в течение 2— 6 час.

Для деталей, непосредственно не соприкасающихся с водой (рангоут, внутреннее оборудование), могут применяться казеиновые клеи. Они выпускаются следующих марок: В-105, В-107 и ОБ. Лучшим является клей марки В-105. Для приготовления раствора казеинового клея порошок казеина разводят в чистой питьевой воде комнатной температуры при соотношении его с водой как 1 : 1,7 или 1 : 2, в зависимости от требующейся начальной вязкости. Клеевой раствор сохраняет рабочую вязкость в течение не менее 4 час после приготовления.

В крайнем случае казеиновый клей можно использовать и для склеивания деталей набора самых маленьких лодок. После склеивания надо тщательно защитить поверхности деталей, особенно в районе клеевого соединения, от влаги, пропитав их горячей олифой или покрыв лаком. Водостойкость клея можно повысить, введя в него портландцемент и антисептик.

На 100 вес. ч. клея В-107 (в порошке) добавляют 75 вес. ч. цемента марки 200 и выше и 3 вес. ч. динитрофенола или оксидифенола. Цемент нужно применять самого тонкого помола и без посторонних примесей. Заготовки и детали для склеивания любым клеем должны быть соответствующим образом подготовлены. Влажность древесины не должна превышать 12—18%, склеиваемые поверхности нужно тщательно подогнать, прострогать и очистить от грязи. Нужно помнить, что чем тоньше будет слой клея, тем прочнее соединение.

Смоляной клей наносят на обе поверхности кистями, тонким слоем. Этот первый слой впитывается древесиной, поэтому нужно выдержать заготовки в течение 5—10 мин, затем нанести второй слой и соединить детали, прижимом их друг к другу с помощью струбцин, цвинок или грузов таким образом, чтобы создать давление от 2 до 4 кг/см2 . В некоторых случаях требующееся давление обеспечивается гвоздями и шурупами. Необходимое для этого количество крепежа можно определить из расчета, что один шуруп диаметром 3—4 мм и длиной 25—30 мм создает местное давление 50—70 кг; один гвоздь 2×20—около 20 кг.

Детали под давлением выдерживают в течение 15—20 час, обрабатывать же их следует не ранее чем через сутки после склеивания. Клеить в сырую, холодную погоду, в туман и дождь нельзя. Лучше всего это делать при комнатной температуре и влажности примерно 60%.

Клеить казеиновым клеем можно при температуре 12—25° С. Заготовки, покрытые клеем, выдерживают на воздухе 2—5 мин, затем соединяют. Закрытая пропитка продолжается 5—20 мин, после чего склеиваемые детали спрессовывают. Продолжительность выдержки под давлением при склеивании без нагрева составляет для прямолинейных деталей 6— 8 час, для изогнутых — 10—18 час. Обработка деталей возможна через 2—3 час после снятия пресса.

Расход смоляных клеев при одностороннем покрытии заготовки составляет 180—250 г/м2,

при двустороннем — 250—400 г/м2 и соответственно казеинового клея 350—500 г/м2 и 500—700 г/м2.

Гнутоклееные детали.

В корпусе малого судна есть немало деталей, имеющих криволинейную форму, таких, как форштевни, бимсы, привальные брусья, шпангоуты. При крутом изгибе их удобно сделать гнутоклееными (иногда называют такие детали ламинированными) из пакета тонких реек. Каждой такой рейке несложно придать требуемый изгиб, а затем склеить их. После затвердевания клея вся деталь сохраняет заданную форму.

В зависимости от габаритных размеров выклеиваемой детали делают заготовки из досок толщиной 8—10 мм, реек 4—7-миллиметровых или фанеры. Ширину заготовок следует брать на 4—6 мм больше, чем ширина, которую необходимо получить после окончательной обработки. Из досок (или толстой фанеры) делают шаблон — цулагу, соответствующий по форме и размерам обводам будущей детали; контуры шаблона снимают с плаза. Шаблон прибивают гвоздями к полу. На расстоянии от шаблона, немного большем толщины детали, закрепляют прижимы или прибивают упоры для клиньев или цвинок (рис. 42).

Заготовленные и выстроганные заранее планки намазывают клеем и спрессовывают в один пакет, прижимая его болтами или клиньями к шаблону (на рисунке в виде брусков). Можно для спрессовки использовать заклепки, шурупы, гвозди, если только они не послужат помехой при дальнейшей обработке детали.

Размечая шаблон, нужно учесть, что после снятия с него склеенной детали она немного распрямится. Поэтому шаблон нужно сделать с несколько меньшим радиусом кривизны. Например, выклеивая форштевень для лодки с высотой борта в носу 800 мм, нужно верхнюю точку штевня на шаблоне перенести внутрь корпуса на 70—80 мм.

При выполнении гнутоклееных деталей следует учитывать также, что радиус изгиба не должен быть меньше значений, указанных в табл. 6. В таких деталях удобно применять рейки из различных пород древесины. Например, наружные рейки на форштевне сделать дубовыми, а внутренние — из сосны.

Соединение длинных деталей.

Длинные рейки набора: привальные брусья, стрингеры, киль — можно склеивать из нескольких частей по длине. При этом имеется возможность вырезать все пороки древесины. Сращивают рейки «на ус», сострагивая стыкуемые концы под одинаковым углом (рис. 43). Длина заусовки обычно принимается равной 10—15 толщинам рейки. Такое же усовое соединение применяется и при изготовлении гнутоклееных деталей, мачт и других брусьев из нескольких слоев.

При этом стыки в соседних слоях разносят один от другого на расстояние не менее 24 толщин рейки. Смежные рейки следует располагать так, чтобы сторона одной рейки, ближайшая к наружному диаметру сечения ствола дерева (заболонная часть), прилегала к такой же стороне другой (или наоборот — сердцевина к сердцевине). Это нетрудно установить по годовым слоям (рис. 44).

Стыкование фанеры при постройке лодок делается либо «на ус», либо с подкладной планкой. Перекрой листов принимается равным 12—20 толщинам  фанеры. Рекомендуется обрабатывать стыкуемые кромки обоих листов совместно. Для этого нужно прикрепить на гвоздиках к верстаку сначала один лист, затем на него наложить, перевернув и отступя от обрабатываемой кромки на величину перекроя, второй и прострогать полуфуганком кромки сразу обоих листов таким образом, чтобы срезы у обоих листов фанеры были параллельны и имели одинаковую ширину (рис. 45, а).

При склеивании встык (рис. 45, б) подкладывается доска, сверху — другая; для обжатия, на доски надо положить грузы или спрессовать стык гвоздями. Если склеивание встык производится с подкладной планкой, то эта планка (рис. 45, в) вырезается из такой же фанеры шириной 100—120 мм и кладется на стык с внутренней стороны обшивки. Сопрягаемые поверхности, в том числе и торцы стыкуемых листов, намазывают клеем и запрессовывают с помощью грузов или мелких гвоздиков. Концы гвоздей загибают.

Соединение этого типа можно выполнить и без клея, проложив между листами фанеры и планкой кусок миткаля, пропитанного краской. Клей обычно наносят на детали с помощью кистей. Для больших поверхностей и при работе с вязкими клеями удобнее использовать шпатель из пластика с зубчатой гранью (рис. 46). Размеры зубцов подбирают такими, чтобы клей равномерно распределялся по всей поверхности.

Источник:  Д. А. Курбатов.  «15  проектов судов для любительской постройки».

30.11.2011 Posted by | строительство | , , , , , , , , , | Оставьте комментарий

Постройка деревянных судов. Крепежные детали.

Основным крепежом, с помощью которого любитель соединяет детали в узлах корпуса лодки, служат гвозди и шурупы. В судостроении используют обычно гвозди-заклепки из красно-медной проволоки и латунные шурупы или стальной оцинкованный крепеж.

Основным крепежом, с помощью которого любитель соединяет детали в узлах корпуса лодки, служат гвозди и шурупы. В судостроении используют обычно гвозди-заклепки из красно-медной проволоки и латунные шурупы или стальной оцинкованный крепеж.

Красно-медные гвозди в продажу не поступают, но их несложно сделать самому из медной проволоки в специальном приспособлении — гвоздильне. Оно состоит из двух стальных планок /, приваренных к дужке 2 из проволоки (рис. 39). В планках, соединенных вместе, просверливают отверстия диаметром на 0,1—0,2 мм меньше диаметра проволоки. Для образования шляпки, на одном конце отверстий делают зенковку.

Нарезанные по размеру гвоздей куски проволоки 3 вставляют в отверстия так, чтобы над планкой возвышался конец в 5—6 мм, после чего гвоздил ьню зажимают в тиски 4. Из выступающей части проволоки легкими ударами ручника делают шляпку гвоздя.

Обычные стальные шурупы и гвозди, купленные в магазине, можно сдать для оцинковки в мастерские, которые есть в любом городе. Существует также способ горячей оцинковки в домашних условиях. Для этого надо иметь коксовый горн, стальной ковш (или тигель) и клещи. Перед оцинковкой детали очищают от грязи, ржавчины и окалины металлическими щетками, а затем протравливают в растворе соляной кислоты.

После этого детали промывают в теплой воде и опускают на несколько секунд в хлористый цинк, не прикасаясь к ним руками. Затем крепеж сушат и приступают к оцинковке, которую можно делать двумя способами.

При первом способе в расплавленный в тигле цинк добавляют десятую долю чистого олова, затем бросают в тигель немного нашатыря и через его пленку погружают в раствор оцинковываемую деталь.

При втором способе деталь предварительно опускают на 2—3 сек в крепкий раствор нашатыря, стряхивают раствор до последней капли, а затем медленно и осторожно погружают деталь в расплавленный цинк. Этот способ опасен тем, что случайно оставшаяся капля нашатыря может вызвать выплескивание металла из тигля. Когда поверхность деталей сплошь покроется ровным слоем цинка, их бросают на пол, чтобы при ударе с них слетели излишки расплавленного цинка. Оцинковывать детали надо обязательно в защитных очках, в брезентовом костюме и в перчатках.

На худой конец можно употребить и неоцинкованный крепеж, но его надо предварительно накалить до вишневого цвета и опустить в олифу. В крайнем случае до установки крепеж можно опустить в лак, густую краску или олифу.

В скрепляемых деталях предварительно сверлят отверстия, диаметр которых примерно на 0,1 мм меньше диаметра гвоздя. От кромки доски до гвоздя должно быть расстояние не менее трех его диаметров, а от торца доски до гвоздя — не менее шести.

Под гвозди малых диаметров (до 2,5 мм), когда нет опасности раскалывания древесины, отверстия не сверлят. Гвоздь вбивают в дерево или пробивают дерево насквозь. На вышедший конец надевают шайбу (настоящие «морские» медные шайбы имеют небольшую выпуклость и обжимаются на гвозде трубкой), откусывают конец гвоздя, оставляя 2—3 мм на расклепывание.

Расклепывают конец гвоздя нанесением легких ударов попеременно то плоской, то острой частью молотка до тех пор, пока образующаяся головка не закроет внутреннего диаметра шайбы. Со стороны шляпки при этом гвоздь поддерживают стальным бруском или тяжелым молотком (рис. 40, а).

Конец гвоздя можно также загнуть и утопить его в древесину (рис. 40, б). Важно, чтобы гвоздь был сильно подтянут к слоям дерева. Во всех случаях головки гвоздей утапливают в древесину.

Для просверливания отверстии под гвозди удобно пользоваться не обычным сверлом, которое легко сломать, а сделанным из гвоздя или стальной проволоки. Конец гвоздя расплющивается и затачивается, как показано на

рис. 40, в. Ширина расплющенной части должна быть равна диаметру отверстия, которое надо будет просверлить.

Рекомендуемые размеры гвоздей для лодок с фанерной обшивкой приведены в табл. 4. Под шурупы с потайной головкой отверстия сверлят двумя сверлами: под нарезанную часть шурупа — диаметром Л, под гладкую часть — диаметром Б и под головку — зенковкой диаметром В (рис. 41, а). Диаметр отверстия А подбирается в зависимости от твердости древесины.

Например, для шурупа диаметром 4 мм в дубе нужно сверлить отверстие А диаметром 3,2 мм, в сосне — 2,5 мм. Глубина и диаметр отверстия Б подбираются по гладкой части шурупа. Для 4-миллиметровых шурупов, например, этот диаметр принимается 3,8—3,9 мм. Существуют специальные сверла (рис. 41, б), сделать которые стоит для наиболее ходовых размеров шурупов, если их несколько сотен. Шурупы не должны проходить насквозь, они должны быть короче суммарной толщины соединяемых деталей по крайней мере на 3 мм.

При завинчивании шурупов нельзя допускать их проворачивания и перекоса в отверстии; не следует также забивать их ударами молотка; молотком можно лишь ввести шуруп в отверстие и придать ему нужное направление. Шурупы можно завертывать коловоротом со вставленной вместо сверла отверткой.

Размеры шурупов и шаг в соединениях для лодок с фанерной обшивкой приведены в табл. 5. Для соединения отдельных деталей корпуса могут применяться болты. Диаметр болта d равен примерно 15% его длины. При установке болтов вдоль волокон, расстояние между их осями, выдержйвается, не менее шести, диаметров, а при расположении поперек — не менее трех диаметров. Расстояние от оси болта до кромки доски должно быть не менее 2,5d, а до торца — не менее (6 — 8) d.

Головки болтов, шурупов и гвоздей утапливают: ниже поверхности наружной обшивки на 1,5—2 мм. Углубление затем шпаклюют древесной мукой (или опилками), замешанной на клее ВИАМ Б-3 или на эпоксидной смоле.

В обшивке из досок головки шурупов могут быть заделаны деревянными пробками. Вытачивают пробки с помощью полого сверла из той древесины, в которую они будут ставиться. Забиваются пробки с натягом 0,5 — 0,8 мм в тщательно очищенные отверстия.

Направления волокон древесины у забитой пробки и у доски обшивки должны совпадать. В тех случаях, когда есть опасность расколоть деталь, ставя в нее рядом несколько шурупов или гвоздей, лучше располагать их в шахматном порядке, по разным слоям древесины с расстоянием между ними в 2—4 диаметра.

Источник:  Д. А. Курбатов.  «15  проектов судов для любительской постройки».

30.11.2011 Posted by | строительство | , , , , , , , , , | 2 комментария

Постройка деревянных судов. Рабочее место, приспособления и инструмент.

В зимнее время постройка лодки возможна только в сухом, отапливаемом помещении. Это может быть широкий коридор, подвальное помещение и даже комната. Важно, чтобы здесь разместились лодка (хотя бы наискосок) и верстак и еще осталось бы свободное место для прохода. Достаточным бывает помещение на 1 м длиннее и на 2 м шире строящегося судна. Если большого теплого помещения нет, то за зиму можно заготовить все детали набора, собрать узлы шпангоутов, транец и форштевень, с тем чтобы летом заложить судно на стапеле в сарае или под навесом. В крайнем случае можно строить и на открытом воздухе, закрывая корпус брезентом.

Как уже упоминалось, при постройке нужен верстак (для изготовления деталей), который можно собрать из двухдюймовых досок. Желательно сделать верстак такой же длины, как и строящееся судно, или, при меньшем его размере, расположить его так, чтобы на нем можно было обрабатывать длинные брусья, если подставить под их свисающие концы козелки.

Хороший верстак должен быть оборудован упорами, клиновыми зажимами и деревянными тисками (рис. 26), позволяющими обрабатывать деталь в любом положении. Вместо тисков можно использовать струбцины и цвинки — зажимы с клиньями. Подобные же приспособления необходимы и при сборке корпуса, в том числе и клещи (рис. 27). Клещи собирают из двух длинных брусков / с помощью болта 2. Усилие создается за счет клина 3, а чтобы концы клещей не изнашивались и не сминали деталей, их обивают кусочками кожи 4. Клещи хороши, например, для сборки наборной обшивки 5, когда требуется большой вылет струбцины.

При сборке и склейке многих деталей можно обойтись цвинками 7, вырезанными из толстой бакелизированной фанеры. Детали, например привальный брус 8, к обшивке 6 прижимают с помощью клина 3. Особое значение имеют струбцины (рис. 28), и чем большим их количеством располагает судостроитель, тем быстрее пойдет работа, поэтому необходимо заранее запастись ими или изготовить самодельные. Залог успеха всей работы — хороший и правильно заточенный инструмент.

Нужно располагать хотя бы минимальным набором: лучковой и поперечной пилой (желательно с мелкими зубьями), шерхебелем (рубанок с закругленным лезвием резца), рубанком, фуганком, набором стамесок и долот, коловоротом с перками и дрелью, сверлами, молотком, клещами, кусачками и плоскогубцами, отвертками, рашпилем и напильниками. При работе с долотом и стамеской нужно пользоваться деревянным молотком — киянкой. Необходим также инструмент для разметки и проверки деталей: метр, плотницкий угольник, отвес, рейсмус, ватерпас.

Подбирая рубанок или фуганок, надо проверить положение резца в колодке и его заточку. Резец устанавливается в колодке под определенным углом — углом резания (рис. 29). При угле резания, близком к 38°, рубанок хорош для строгания и торцевания, очень легко отворачивает стружку, но дает задиры и шероховатую поверхность. При угле около 52° инструмент дает гладкую поверхность, но строгать им гораздо тяжелее. Если увеличить угол резания до 80—85°, то такой рубанок может употребляться лишь для снятия тончайшей стружки — при зачистке уже остроганной поверхности.

В одинарных рубанках резец ставят передней гранью к плоскости строгания под углом 45—48°, в рубанке с двойным резцом — под углом 52°. Заточить же резец нужно примерно под углом 30°, проверяя этот угол по соотношению ширины затачиваемой фаски и толщины резца. Если ширина фаски в 1,5 раза больше толщины резца, то угол заточки равен примерно 34°. Ширина фаски, равная трем толщинам резца, соответствует углу заточки примерно в 18°.

Делать угол заточки больше 34о нельзя, так как резец будет скользить по поверхности, не срезая стружки; при угле заточки менее 18° резец очень быстро тупится. Такой резец если и годится, то лишь для строгания самой мягкой, прямослойной, лишенной сучьев сухой древесины. Фаска должна быть совершенно плоской, а само лезвие — прямолинейным. Только уголки лезвия закругляют, и они постепенно отходят от обрабатываемой поверхности плавным загибом. Без такого закругления углы оставляют на обрабатываемой поверхности рубцы.

Полезно сделать приспособление для заточки резца на точиле (рис. 30). В деревянном рычаге 2 делается прорезь с наклоном под углом 34°. В этой прорези клином 4 закрепляется резец 3. Если удерживать рычаг горизонтально при помощи упора 1, резец будет располагаться под углом 34° к точильному камню, т. е. под тем углом, под которым должна быть заточена фаска. Заточенный на точиле инструмент правят на плоском мелкозернистом точильном камне — бруске.

Перед правкой грубые заусенцы удаляют, втыкая лезвие в торец мягкой, но плотной древесины. На сухом бруске точить и править инструмент нельзя, так как лезвие может отпуститься и будет плохо работать. Брусок смачивают водой, реже маслом или керосином. Есть два способа правки резца на бруске. При первом способе (рис. 31) инструмент кладут фаской на брусок и сильно прижимают левой рукой. Затем резец равномерно двигают взад и вперед вдоль бруска резкими толчками. При этом стараются сохранить угол заточки и не закруглить фаску.

При втором способе резец правят непрерывными круговыми движениями по поверхности камня, плотно прижимая лезвие. При этом резец держат так, чтобы лезвие не врезалось в поверхность камня. Такое положение инструмента при правке придает ему большую устойчивость, и качнуть резец здесь не так легко, как при движении поперек фаски (при первом способе) Заусенцы во всех случаях снимают прикладывая инструмент другой стороной лезвия к поверхности бруска и делая несколько кругообразных движений. Окончательно лезвие нужно править на самом мелкозернистом бруске — оселке.

Лезвие любого режущего инструмента оказывается более стойким, если после каждой новой заточки сострогать им хотя бы несколько стружек. Если же между заточкой инструмента и его работой пройдет несколько часов, лезвие окажется менее стойким, быстрее затупится.

Стамески для долбления затачивают под  углом 30° (длина фаски — 2 толщины стамески), для строгания — под углом 20—25° (длина фаски — 2—2,5 толщины стамески); для резания, например, фанеры стамеска затачивается на 15° (длина фаски — 3,5 толщины). Точат стамески так же, как и резцы (рис. 32). Топор затачивается как показано на рисунке.

Долото затачивают очень отлого, градусов на 15 (фаска — 3—4 толщины), чтобы оно легко входило в древесину и не сминало волокон. На грубой работе тонкое лезвие может сломаться. Поэтому, заточив фаску на точиле, конец долота (не больше чем на 3 мм) затачивают на 25—30°.

Пила (ножовка) также один из инструментов, нуждающихся в периодической заточке. Но перед точкой необходимо ее зубья выровнять до одинаковой высоты. Сделать это можно с помощью плоского напильника, поместив его в простую колодку (рис. 33) из деревянных брусков.

Опилив выступающие зубья, пропиливают впадины между ними и придают им одинаковую форму. Затем зажимают пилу в тисках и разводят зубья в стороны так, чтобы пропил получился в 1,5—3 раза шире толщины полотна пилы. Чем мягче древесина, тем развод делается шире, и наоборот. Чтобы развод был одинаковым, пилу протаскивают зубьями между губками тисков, раздвинутыми на ширину развода.

Точат зубья обычно трехгранным напильником. Пилы с тонким полотном (не толще 1 мм), а также пилы, предназначенные только для долевой распиловки древесины, точат так, чтобы торцевые режущие кромки зубьев у них были расположены под прямым углом к плоскости полотна пилы. При этом напильник держат перпендикулярно полотну и с одинаковым нажимом двигают его вперед — назад, стараясь спилить зубья до одинаковой глубины, для чего проводят напильником по всем зубьям одинаковое число раз, делая совершенно одинаковые размахи (рис. 34).

При заточке зубьев поперечной пилы напильник ведут примерно под углом 60—70о к полотну. Сначала опиливают зубья, отведенные в одну сторону полотна (через один зуб), например помеченные четными цифрами (рис. 35, б). Затем, повернув полотно другой стороной, затачивают все отведенные в другую сторону зубья (рис. 35, б — обозначены нечетными цифрами). Напильником пилят так, чтобы он надвигался на зуб. Если он будет сбегать с зуба в обратном направлении, на зубьях будут образовываться заусенцы, и пила будет плохо работать. Чтобы напильник лучше снимал металл, следует натереть его древесным углем.

Нужно постараться раздобыть на время постройки какой-либо механизированный инструмент, например электродрель, электроотвертку, электрорубанок, наждачный камень. Хорошим помощником может стать и самодельная «шведская» ленточная пила (рис. 36). На ней можно выпиливать бруски, детали из фанеры (в том числе — с криволинейными кромками). В качестве полотна используется кусок ленточной пилы, который можно достать в любой столярной мастерской. Работают на этой пиле, нажимая ногой на педаль.

При сборке корпуса необходим шланговый уровень, который можно изготовить из двух стеклянных трубок диаметром 8—12 мм и длиной по 200—300 мм, соединив их резиновой трубкой длиной 4—6 м. В трубку заливается вода, подкрашенная синькой или марганцовкой.

Рейсмус (рис. 37, а), применяющийся для причерчивания обшивки, можно изготовить из обрезков / и 3 10-миллиметровой фанеры, склеенных через брусок 2. В верхней планке делают прорезь для карандаша 5. Прорезь стягивают винтом 4. Затягивая гайку винта, карандаш можно зафиксировать в нужном положении и причертить линию, например, для шурупов на скуловом стрингере (рис. 37, б).

Для работ по установке оборудования внутри корпуса полезно использовать также простое приспособление для причерчивания, состоящее из бруска / с закрепленным на нем карандашом 2 (рис. 38).

Источник:  Д. А. Курбатов.  «15 проектов судов для любительской постройки.».

29.11.2011 Posted by | строительство | , , , , , , , , , | Оставьте комментарий

Коррозия: — что это такое и как с ней бороться.

Увы, но сталкиваться с коррозией нам приходится практически во всех областях нашей жизни. И ничего загадочного в ней нет — это вполне естественное изменение любого металла. Протекающие при этом процессы примитивными не назовешь, но и особо сложного тут тоже ничего нет. Поскольку коррозия значительно ускоряется при наличии воды или влаги, флот, в том числе и маломерный, попадает в особую «группу риска». Бороться с коррозией не только нужно, но и можно. Причем для борьбы с ней можно задействовать те же самые процессы, которые ее вызывают, предложив этому неуловимому всепожирающему чудищу альтернативную «пищу».

Чтобы лучше понять, что такое коррозия, начнем с наиболее распространенной ее разновидности — ржавчины. Все мы имели с ней дело, но чтобы понять, как она возникает, придется освежить в памяти школьные уроки химии.

С точки зрения химика железная руда представляет собой два атома железа, связанных тремя атомами кислорода (Fe2O3 ). Добытый из земли коричневато-красный порошок сам по себе ни на что не годен. Но после процессов его очистки и выплавки мы получаем железо или чугун — материал куда более полезный. Использовать его можно как в чистом виде, так и в улучшенном, получая при добавлении иных химических элементов различные сорта стали.

Всем известно, что происходит с железными изделиями под воздействием воды — они ржавеют. Если процесс идет достаточно долго, то, скажем, от железного гвоздя в итоге останется лишь кучка коричневато — красного порошка — ржавчины, или оксида железа, имеющего уже знакомую нам химическую формулу Fe2O3 . Да — да, ржавчина — оксид железа — имеет абсолютно тот же состав, что и железная руда.

И вот почему. Атомы железа стремятся вернуться в свое естественное состояние, в котором они находятся состояние, в котором они находятся в составе руды, ржавчины или оксида железа. В нем они наиболее стабильны. Стремление к подобному состоянию присуще не только железу, но и практически всем прочим металлам, используемым в промышленности.

Тот вид коррозии, которому подвергается оставленное под дождем железное изделие, включает в себя не только химические, но и физические процессы. Происходящую реакцию принято именовать электрохимической.

Для того, чтобы два атома железа смогли соединиться с тремя атомами кислорода (и образовать Fe2O3 ), они должны объединиться электронами (крошечными частицами, вращающимися вокруг атомов). При этом несколько электронов освобождается. И сколько электронов освобождается. И поскольку электричество — это попросту движение свободных электронов, то при химической реакции вырабатывается и электрический ток.

Не забывайте, что железо стремится к превращению в оксид железа, потому что это его естественное, наиболее стабильное состояние. Необходим для этого только кислород. «Поставщиком» кислорода является вода, так что при наличии влаги железо ржавеет гораздо быстрее. Все это в полной мере применимо к оксиду алюминия и собственно алюминию, из которого делают подводные части подвесников и угловых колонок.

Вот, в общем, и все секреты коррозии металла, в основе которой лежит электрохимическая реакция. Такой тип коррозии принято еще называть гальванической (хотя далеко не всякая электрохимическая реакция — гальваническая коррозия).

Расположенные под водой металлические детали обычно подвергаются двум типам коррозии: гальванической и так называемой «коррозии от блуждающих токов».

Гальваническая коррозия представляет собой электрохимическую реакцию между двумя или несколькими различными (или разнородными) металлами. Различными, поскольку, для того чтобы началась реакция, один должен быть химически более активным (или менее стабильным), чем другой или другие. Когда мы говорим про гальваническую коррозию, то имеем в виду электрообмен. Все металлы обладают электрическим потенциалом, поскольку у всех атомов есть электроны, движение которых и есть электричество.

Гальваническая коррозия более активного металла начинается в тот момент, когда две или более детали из разнородных металлов, имеющие взаимный контакт (при обычном соприкосновении, или же посредством проводника) помещаются в электролит (любую жидкость, проводящую электричество, за исключением дистиллированной воды).

Не только соленая морская, но и обычная вода из-под крана благодаря наличию минеральных веществ является превосходным электролитом, причем с ростом температуры электропроводность ее только растет (по этой причине корпуса судов, эксплуатирующихся в жарком климате, заметно больше подвержены коррозии).

Процесс гальванической коррозии можно наиболее наглядно проиллюстрировать на примере алюминиевой подводной части подвесного мотора и гребного винта из нержавеющей стали. Алюминий — более химически активный металл — является в данном случае анодом, а менее активная нержавеющая сталь — катодом. Вот что происходит, когда эта пара помещается в воду, играющую роль электролита (рис. 1):

1. На аноде:

а) через место контакта (в нашем случае — через гребной вал) электроны перетекают с анода, металла химически более активного, на катод — гребной винт. Происходит следующая реакция: Al – Al +++ + 3e;

б) при этом атомы химически более активного металла превращаются в ионы (этим термином обозначаются атомы с «недостатком» или «избытком» электронов), которые устремляются в воду и связываются с ионами кислорода, обмениваясь с ними электронами и образуя оксид алюминия. (Процесс этот ничем не отличается от того, что происходит с ионами железа при образовании оксида железа);

в) образовавшиеся молекулы оксида алюминия либо уносятся потоком воды, либо оседают на алюминиевой поверхности в виде белесого налета. Таким образом, подводная часть вашего подвесника в результате гальванической коррозии буквально растворяется в воде.

2. На катоде:

а) с анода поступают электроны, причем они не просто накапливаются, а вступают в реакцию с ионами электролита;

б) реакция обычно происходит такая:

1 1/2 О2 + 3 Н2О + 6 е – 6 ОН ;

в) ион гидроокиси ОН  — щелочной,

поэтому в районе катода образуется щелочная среда. (Это обстоятельство стоит иметь в виду владельцам деревянных корпусов — щелочь разрушает целлюлозу, хотя на практике повреждения обычно не столь значительны).

Очень важно понять, что следствием освобождения каждого положительного иона металла на аноде обязательно является формирование отрицательного иона электролита, образующегося вследствие реакции электронов катода. Электрически анодные и катодные реакции должны быть эквивалентны. Рост или снижение уровня катодной реакции вызывает ответные рост или снижение уровня анодной реакции.

Это ключевой факт для понимания процесса коррозии и управления им. Его можно проиллюстрировать эффектом влияния размеров анода и катода. Если к очень большому аноду подключить маленький катод, процесс коррозии анода пойдет медленно. А если поступить наоборот, то анод очень быстро разрушится.

Алюминиевых деталей на катере или мотолодке полным-полно (не говоря уже о том, что алюминиевым может быть собственно корпус лодки!). И если не контролировать процесс гальванической коррозии, теоретически все они со временем способны «раствориться» без остатка.

Гальваническая коррозия может протекать даже в том случае, если на вашей лодке нет ни одной детали из нержавеющей стали. Предположим, что и подводная часть мотора, и винт алюминиевые, но лодку вы обычно ставите у пирса со стальной стенкой и подключаетесь при этом к береговой системе электроснабжения.

Провод заземления (так называемый «третий» — дань безопасности) соединяет при этом алюминиевые детали лодки с погруженной в воду стальной стенкой (рис. 2). Если учесть внушительную массу стальной стенки, то и подводной части мотора, и винту грозят серьезные повреждения.

Предотвратить их можно при помощи гальванического изолятора — своеобразного фильтра, отсекающего токи низкого напряжения и позволяющего при этом заземляющему проводу в случае пробоя изоляции или короткого замыкания выполнить свою функцию — отвести ток в землю и спасти вам жизнь.

Основной метод борьбы с коррозией — это использование всевозможных защитных покрытий (в первую очередь краски), изолирующих анод,

но все же полностью решить проблему таким способом не удастся — хотя бы потому, что механические повреждения лакокрасочного покрытия подводных частей подвесных моторов или поворотно-угловых колонок являются самым обычным делом.

Первый признак гальванической коррозии — вздутие краски на поверхностях, расположенных ниже ватерлинии, начинающееся обычно на острых гранях, и образование на обнажившемся металле белесого порошкообразного налета. Потом на поверхности металла начинают образовываться заметные углубления (рис. 3).

Коррозию подводных частей подвесных моторов и угловых колонок — или любых алюминиевых частей лодки — значительно ускоряет наличие деталей из нержавеющей стали, таких, как гребные винты, транцевые плиты (особенно если они «заземлены» на двигатель), узлы дистанционного управления. Именно на них и уходят электроны алюминиевых деталей.

Но и без наличия нержавеющей стали расположенные под водой алюминиевые детали все равно подвергаются воздействию коррозии  этого вида — хотя и не столь интенсивной, как при контакте с иным металлом. При наличии электролита на большинстве однородных, вроде бы, металлических поверхностей все равно образуются крошечные аноды и катоды — в тех местах, где состав сплава неоднороден или имеются посторонние вкрапления или примеси — например, частицы металла с форм или штампов.

Нержавеющую сталь в качества катода и алюминий в качестве анода мы использовали лишь в качестве одного из примеров; образовать «батарею» для запуска гальванической коррозии в паре с алюминием способен любой другой металл. Именно это и позволяет бороться с коррозией ответственных деталей — в паре с более активным металлом роль катода начинает играть уже алюминий, а небольшая контактирующая с ним деталь из цинка отдается ей «на съедение» и никаких больше функцией не несет.

Такие детали именуются анодными протекторами, и сейчас практически не встретишь подвесника или угловой колонки, которые были бы ими не снабжены. Итак, при контакте алюминия с цинком катодом становится алюминий, а подвергается коррозии цинк — металл более химически активный. Поскольку анодный протектор корродирует достаточно активно, установленный на колонке кусочек цинка может «раствориться» буквально за одну навигацию, оставив алюминий без защиты. Поэтому состояние этих нехитрых деталей надо время от времени инспектировать и вовремя заменять их «свежими».

Один же из худших врагов алюминия при образовании гальванической пары — это медь или медные сплавы (латунь или бронза), поэтому использовать медный крепеж при установке алюминиевых узлов и деталей (например, водоотливных помп) категорически не рекомендуется.

Еще одна причина гальванической коррозии — подключение к береговой электросети, обычно снабженной заземляющим проводом. При этом алюминиевая подводная часть вашего мотора или колонки посредством его подключается к подводным частям других лодок и становится частью огромной гальванической батареи, связанной с погруженным в воду береговым металлом. При этом не только на вашей лодке, но и на соседних коррозия значительно ускоряется.

Мы рассмотрели, на что способна гальваническая коррозия при использовании электрического потенциала самих металлов. Представьте, что будет, если добавить еще электричества!

Произойти подобное может в том случае, если металл, по которому течет электрический ток, поместить в любой природный, т.е. изначально «заземленный» водоем. Ток через воду устремится в землю. Следствием этого явится интенсивная коррозия в том месте, где произошел «пробой».

Данная разновидность коррозии отличается от гальванической, хотя природа у них одна. Гальваническая коррозия вызывается соединением двух разнородных металлов и происходит за счет их электрических потенциалов. Один металл выступает в роли анода, другой — в роли катода. Здесь же электрический ток попадает на подводную часть лодки из внешнего источника и через воду уходит в землю.

К примеру, ваша лодка расположена между лодкой с утечкой постоянного тока и местом, являющимся хорошим заземлением для этого тока. Хотя ток может уходить в землю и через воду, ваша лодка может явиться проводником со значительно меньшим сопротивлением. Таким образом, ток будет уходить в землю и с нее. Наиболее интенсивно коррозия будет развиваться в том месте лодки, откуда ток уходит в воду.

Блуждающие токи могут вызываться не только внешними, но и внутренними источниками — коротким замыканием в сети лодки, плохой изоляцией проводки, подмокшим контактом или неправильным подключением какого — либо элемента электрооборудования.

Наиболее же распространенный внешний источник этих токов — береговая сеть электроснабжения. Лодка с внутренним источником блуждающих токов (например, по причине повреждения изоляции одного из проводов) может стать причиной усиленной коррозии множества соседних лодок, подключенных к той же береговой электросети, если они обеспечивают лучшее заземление. Ток при этом передается на другие лодки посредством все того же «третьего» заземляющего провода.

Гораздо более неуловимый — но потенциально более опасный — случай коррозии блуждающих токов может происходить безо всяких проблем с электрооборудованием (и вашей лодки, и соседних). Предположим, что вы возвращаетесь на стоянку после выходных на воде, подсоединяетесь к береговому источнику, чтобы подзарядить аккумулятор, и спокойно уходите домой — автоматическое зарядное устройство само отключит зарядившуюся батарею.

В понедельник по соседству с вашей лодкой причаливает большой стальной катер (с ободранной и поцарапанной краской). Владелец его тоже подключается к береговой сети и тоже оставляет свою посудину на несколько дней. Электрическая батарея готова — большой стальной корпус и небольшая подводная часть вашего мотора, соединенные заземляющим проводом.

В зависимости от разделяющего их расстояния, разницы размеров и времени, которое ваш сосед решил провести на берегу, в следующие выходные вы можете обнаружить, что подводная часть вашего мотора либо просто покрыта белесым налетом, либо разрушилась чуть ли не полностью.

В заключение — об известной всем «нержавейке» и так называемой щелевой коррозии, которой подвержены многие металлы, а в особенности — нержавеющая сталь. «Щель» в данном случае — это пространство под всевозможными отложениями (песка, ила и т.д.), под пластиковыми шайбами, фетровыми прокладками и т.д. — иначе говоря, место, из которого попавшая туда влага не может найти выхода и где образовалась застойная зона.

Нержавеющая сталь — это сплав на основе чугуна, в который входят хром и никель. Не ржавеет она благодаря образующейся на поверхности изделия тонкой пленке оксида хрома. При отсутствии кислорода оксидный слой разрушается, и нержавеющая сталь покрывается ржавчиной не хуже обычной. Иными словами, «нержавейка» не ржавеет только до тех пор, пока имеется доступ кислорода.

В «щели», где влага кислорода практически лишена, эта разновидность стали теряет свои свойства. Самый простой способ предотвратить данную разновидность коррозии — ограничить доступ влаги в «щели», вовремя удалять образующиеся отложения и обеспечить хорошую вентиляцию сомнительных мест.

Итак, вкратце перечислим меры, которые следует предпринимать для борьбы с коррозией на лодке:

— следить за состоянием лакокрасочного покрытия и вовремя восстанавливать поврежденные места;

— использовать рекомендованные заводом-изготовителем защитные покрытия и густые смазки;

— следить за состоянием анодных протекторов и в случае их значительного износа заменять их на новые;

— использовать в цепи подачи берегового питания фильтр слабых токов на заземляющем проводе;

— подключать лодку к береговой электросети только в случае необходимости (например, для подзарядки аккумуляторов).

Источник:  «Катера и Яхты» ,  №223.

18.11.2011 Posted by | легкие сплавы, сталь, технология | , , , , , , , , , | Оставьте комментарий

Ремонт деревянных яхт. Окончание.

Основной целью создания в 2001 г. Ассоциации яхт класса «Л-6» было сохранение и развитие «шестерок». Благодаря распространению опыта ремонтно-восстановительных работ на многих яхтах силами и средствами экипажей удалось выполнить такие сложные работы, как замена или ремонт килевой балки, контртимберса, шпангоутов, обшивки, палубы, комингсов кокпита и рубки и т. д. В этой статье хотелось бы остановиться еще на одном важном вопросе.

Напомним, что с 1963 по 1978 г. в Ленинграде было построено более сотни серийных деревянных крейсерско-гоночных яхт национального класса «Л-6». Благодаря надежной конструкции и хорошей ремонтопригодности эти деревянные яхты до сих пор активно участвуют в соревнованиях и совершают дальние спортивные плавания, хотя расчетный срок их эксплуатации без капитального ремонта составлял 15 лет. До сих пор спускается на воду и «шестерка» № 1 – «Ангара» (1963 г.), всего же в Петербурге и Ленинградской области активно эксплуатируются и ремонтируются 36 яхт класса «Л-6» и родственных им «Алькоров». Подобные работы ведутся и в Эстонии, Литве и Латвии, на Дальнем Востоке и на Черном море.

При изготовлении гнутых деталей корпусов деревянных яхт раньше обычно распаривали заготовки и устанавливали их в горячем сыром состоянии по месту на заклепках или болтах. Например, дубовые шпангоуты на яхтах класса «Л-6» в распаренном виде приклепывались к предварительно склеенной на лекалах обшивке медными гвоздями. При таком способе сборки между деталями оставался зазор из-за усадки распаренной детали при ее высыхании. Это снижало как прочность и жесткость конструкции, так и ее долговечность, так как внутренняя поверхность распаренной детали оставалась незащищенной от влаги.

В настоящее время вместо распаривания для изготовления изогнутых деталей широко используется ламинирование, т. е. склейка нескольких слоев древесины на специальном стенде. Во многих случаях при ремонте яхты таким стендом является корпус яхты или его часть. Например, при замене гнутых дубовых шпангоутов на яхтах «Л-6» ламинирование обычно выполняется прямо на обшивке по месту установки шпангоута.

При этом новый ламинированный шпангоут в отличие от цельного оригинального приклеивается к обшивке, что повышает прочность, жесткость и долговечность конструкции. Однако выклеить гнутую ламинированную деталь «по месту» удается не всегда. В некоторых случаях при ремонте яхт целесообразнее заранее склеить новую деталь или ее часть на стенде, а затем подгонять по месту взамен удаленной части. Причем кривизна удаленной старой и новой детали должна быть идентичной. Речь идет, например, о замене части привального бруса, стрингера, комингса рубки или кокпита.

Не останавливаясь на известных преимуществах ламинирования, отметим только, что при предварительной склейке на стенде изогнутой детали после высыхания клея и снятия нагрузки в детали неизбежно появятся остаточные деформации, вызываемые упругостью древесины и клеевого слоя. Поэтому при изготовлении стенда важно, чтобы в склеенной заготовке детали кривизна с учетом остаточных деформаций в точности совпадала с кривизной оригинальной детали.

В связи со сказанным становится ясно, что даже если в качестве стенда используется целая или вырезанная часть старой детали, то склеенная на ней из слоев новая деталь будет иметь несколько меньшую кривизну, а это усложнит ее подгонку и приведет к остаточным напряжениям при вклеивании.

Как же определить величину остаточных деформаций? С этой проблемой мы столкнулись при ремонте комингсов рубки на «Л-6» «Ника». В специальной литературе рекомендаций на этот счет найти не удалось. Может, недостаточно искали, но времени, как всегда, на все не хватает. Советы знатоков были противоречивы, и мы решили эту задачу сами.

Как известно, рубка на «Л-6» собрана отдельно от корпуса и притянута к карлингсам и бимсам через резиновую прокладку оцинкованными болтами. Изнутри щель между рубкой и палубой закрыта планкой на шурупах и густотертых белилах. Там, где болты проходят под иллюминаторами из-за некачественной герметизации последних, влага проникала под болты и вызывала гниение комингсов и частично карлингсов. Естественно, появлялась раздражающая течь сверху. Не имея возможности заменить комингсы рубки целиком, пришлось вырезать и менять их участки только под иллюминаторами (рис.1).

В зависимости от числа склеиваемых слоев заготовки величина остаточных деформаций будет различной. Детали с небольшой кривизной обычно склеивают из двух-трех слоев в зависимости от толщины детали и имеющегося материала. На «Л-6», например, комингсы склеены из двух слоев толщиной по 17 мм каждый. При хорошей подгонке слоев податливостью клеевых швов можно пренебречь, а при небольших изгибах можно считать, что древесина работает линейно-упруго, т. е. напряжения в ней прямо пропорциональны деформациям.

Кроме того, древесина – анизотропный материал, но при нескольких слоях этим обстоятельством также можно пренебречь. Предположим, что слои заготовки выполнены из одного вида дерева, их толщина и ширина одинаковы и равны соответственно t и b, а число слоев – n. В процессе склеивания при изгибе на стенде слои деформируются отдельно друг от друга, и их суммарная жесткость на изгиб равна сумме жесткостей отдельных слоев n × t3 b/12.

После затвердевания клея, при разгрузке слои работают совместно как один. Их суммарная жесткость будет уже равна (n×t)3 × b/12. Допуская, что при нагружении во время склейки и при разгрузке после нее древесина работает линейно-упруго (рис.2), можно составить выражение для нагрузки Q, требующейся для изгиба отдельных слоев заготовки до прогиба W в виде Q = k × [n ×  t3 ×  b/12]  W , где k – размерный коэффициент, зависящий от длины заготовки, устройства стенда и вида древесины.

Разгрузка после склейки от нагрузки Q до нуля описывается зависимостью Q = k × [(n × t)3 ×  b/12] × (W–W0), где W0  – остаточный прогиб после разгрузки. Из этих выражений можно найти соотношение W/W0 = n2 /(n2 –1). Таким образом, при двух слоях  получаем W = 1.333W0 , при трех  W= 1.125W0, при четырех W = 1.067W0 , при пяти W = 1.042W0, при шести W = 1.028W0  и т. д.

Другими словами, чтобы получить, например, «нужный» прогиб заготовки W0  при двух слоях ламината, 0надо создать на стенде «обеспечивающий» прогиб W в 1.333 раза больший, тогда после отверждения клея и разгрузки мы получим требуемый остаточный прогиб W0. Из формулы видно, что при пяти слоях и больше разница между W и W0  становится незначительной, поэтому при ламинировании сильно изогнутых многослойных деталей «обеспечивающие» ординаты можно не вычислять. Стоит отметить, что данное соотношение не зависит ни от вида древесины, ни от ширины и длины заготовки, ни от способа нагружения заготовки на стенде.

На практике при ремонте следует измерить несколько ординат криволинейной исходной детали W0i  в намеченных сечениях i по ее длине от хорды, затем на стенде обеспечить в этих же сечениях ординаты Wi = [n2 / (n2–1)] × W0i  от хорды или Di = А–Wi от принятой базы, где А – расстояние от хорды до базы (рис.3). Заметим, что жесткость базы, на которой выполняется склейка, например, стола должна быть значительно больше жесткости заготовки.

При ремонте комингса мы склеили заготовку из трех дубовых досок по толщине, предварительно вычислив ординаты по приведенной выше формуле. Кривизна склеенной заготовки практически точно соответствовала кривизне комингса, и после заусовки и подгонки она была вклеена в комингс без дополнительного изгиба. В заключение стоит отметить основные причины, по которым деревянные яхты, например, класса «Л-6», выводятся из эксплуатации и требуют ремонта. Их можно разделить на две группы.

1. Строительные и конструктивные:

– некачественная сборка на верфи (в корпусе встречаются оставленные монтажные железные гвозди, плохая подгонка деталей под склейку и др.);

– использование крепежа и силовых элементов из оцинкованной стали (шурупы и болты палубы и рубки, штевней, килевой балки; ридерсы, стальные шпангоуты и флоры, вантпутенсы и заклепки, крепящие эти

детали к обшивке и деревянным шпангоутам);

– применение верфью второсортной древесины  (наличие сучков в рейках

обшивки, использование реек обшивки тангенциального распила, использование в ватервейсах, комингсах рубки и кокпита ясеня вместо дуба и т. п.);

– использование клея ВИАМ Б3, который при недостаточно хорошей подгонке и запрессовке склеиваемых деталей со временем под действием нагрузок охрупчивается и разрушается;

– некачественные пропитка олифой и лакокрасочное покрытие;

– наличие проблемных узлов и соединений, которых можно было бы избежать при разработке проекта (и которые надо улучшать при ремонтах), например, соединение фанерной палубы с ватервейсом, соединение ахтерштевня с килевой балкой, устройство гельмпорта (рис. 4–6) и др.

2. Эксплуатационные:

– некачественный ежегодный навигационный ремонт (на реечном корпусе ежегодно следует восстанавливать лакокрасочное покрытие всех наружных поверхностей качественными материалами; раз в четыре-пять лет полностью обновлять покрытие наружных поверхностей с предварительной зачисткой, просушкой и пропиткой древесины антисептиками и грунтовками; ни в коем случае не оклеивать деревянные поверхности из реек и массива дерева стеклотканью, оклеивать можно только фанеру и то, если ее хорошо зачистить, высушить, удалить «черный» крепеж и пропитать жидкой эпоксидной смолой; постоянно контролировать состояние покрытия внутренней поверхности корпуса, особенно трюма, и при необходимости его обновлять);

– поздние спуски на воду и поздние подъемы яхты на берег (первое приводит к рассыханию корпуса, разрушению некачественных клеевых соединений и лакокрасочного покрытия, излишнему проникновению влаги в древесину, второе – к недостаточной просушке корпуса после сезона и замерзанию зимой излишней влаги в древесине и ее разрушению);

– хранение яхты зимой без чехла под открытым небом или некачественное зачехление (яхта должна хорошо проветриваться внутри, в том числе и в трюме, и снаружи, но на нее не должны попадать снег и вода; между чехлом и кромкой фальшборта должно оставаться вентилируемое пространство; в идеале деревянную яхту следует хранить на улице под большим навесом с открытыми люками и трюмом);

– загрязнение и застой влаги (попадание песка и грязи с обуви на палубу и внутренние поверхности, особенно в трюм, приводят к истиранию покрытия палубы, загрязнению труднодоступных мест и застою влаги; при заходе на яхту следует тщательно мыть и вытирать обувь, а в идеале переобуваться);

– плохая вентиляция корпуса (на яхте обязательно должны быть установлены пассивные вентиляторы, как можно дальше разнесенные в оконечности корпуса);

– отсутствие регулярной чистки, просушки и проветривания внутренних помещений, в первую очередь трюма и труднодоступных мест, например, под двигателем;

– в теплых морях – некачественная защита подводной части и поражение древесины древоточцем teredonavalis;

– эксплуатационные повреждения.

Дерево – специфический естественный материал. Оно требует к себе заботливого отношения как при постройке и эксплуатации яхты, так и при ее ремонте. При должном отношении к деревянной яхте она может служить очень долго. Достаточно вспомнить яхту «Мираме» из Санкт-Петербурга, которая была построена в Финляндии, и в 2010 г. отметила свое 100-летие.

Хорошо известны петербургским яхтсменам немецкие яхты «Мальва» и «Нева», построенные из отборного дерева в 30-х гг. прошлого века в Германии и реквизированные Советским Союзом после окончания Второй мировой войны. До сих пор они – в строю и совершают плавания по Балтике. «Нева», например, участвовала в регате учебных парусников «The Tall Ships’ Races 2009 Baltic». На этой же регате можно было увидеть деревянные парусники класса B, построенные в конце XIX – начале XX вв.

Это – «Skiblander II» (1897 г.) из Дании, «Gratitude» (1903 г.) из Швеции, «Moosk» (1906 г.) из Великобритании и др. В классе D среди участников этой регаты были и пять деревянных яхт типа «Л-6», и «Алькор» из Санкт- Петербурга: «Арго» (1966 г.), «Былина» (1975 г.), «Варяг» (1973 г.), «Диана» (1967 г.) и «Ника» (1975 г.). Участвуя на «Нике» в 2010 г. в регатах деревянных яхт в Троса (Швеция) «Trosa Tullgarn Royal Palace Regatta» и в Хельсинки (Финляндия) «Hss Baltic Classic Master Cup», мы видели множество великолепно сохраненных деревянных яхт различных классов и размеров.

В Котке в Центре деревянного судостроения Финляндии, где мы побывали в этом году, нам показали находящийся в капитальном ремонте построенный в 30-х гг. прошлого века 12-метровик «Blue Marlin», который готовят для участия в 2011 г. в чемпионате мира в классе «Rm12».

В связи с этим хочется привести цитату из книги «Постройка яхт» К. Рейнке, Л. Лютьен, И. Мус (Пер. с нем., Л., Судостроение, 1982), которую не следует забывать ни тем, кто проектирует и строит яхты, ни тем, кто на них ходит и кто их ремонтирует: «Дерево – самый старый судостроительный материал, который сохраняет свое значение, несмотря на широкое применение многих новых материалов.

Более того, в последние годы деревянные яхты вновь стали приобретать популярность. В Германии (в оригинале ФРГ) – стране, где постройка деревянных яхт всегда отличалась высоким качеством, считают, что вряд ли можно построить яхту из другого материала, кроме дерева, которая имела бы такое благоприятное отношение водоизмещения к длине по ватерлинии и такую долговечность».

Вадим Манухин, Александр Кульцеп.

Источник:  «Катера и Яхты»,  №228.

09.11.2011 Posted by | Ремонт яхт. | , , , , , , , , , | Оставьте комментарий

Старый материал — новая технология постройки корпусов яхт.


Д. Курбатов (По материалам зарубежной печати)

Дерево знакомое. С древесиной— замечательным строительным материалом, дарованным человеку природой, наше знакомство начинается с детства. С того момента, как у нас появляется потребность что-нибудь мастерить. Легкость и прочность, податливость хорошо заточенному резцу, чистота в обработке, привлекательная текстура, волнующий запах стружки — все это заставляет отдавать предпочтение древесине в ряду других доступных материалов.

Не возникали сомнения в выборе древесины и у строителей лодок, катеров и яхт, пока не появились легкие алюминиевые сплавы и стеклопластики. Они смогли конкурировать с деревом по такому показателю, как удельная прочность, т. е. отношение разрушающей нагрузки (или предела текучести) к плотности материала. А значит, поя вилась возможность строить прочные и легкие корпуса малых судов, не уступающие деревянным по ходовым качествам, мореходности и грузоподъемности. В отличие от деревянного корпуса, который состоит из сотен отдельных деталей, суда стали собирать из двух-трех крупных монолитных объемных стеклопластиковых деталей; значительно сократилась трудоемкость изготовления корпусов.

Достоинством пластмассового судостроения является также практически безотходная технология (при правильной организации производства). Деревянный корпус строится только из пиломатериалов самого высокого — отборного сорта; даже при использовании клееных соединений 30—35% пиломатериалов идут в отходы, вместе с которыми удаляются пороки древесины — сучки, косослой, трещины и т. п.

Недостатки дерева как судостроительного материала обусловлены его природным, органическим происхождением. Древесина состоит из множества клеток, образующих вытянутые вдоль ствола волокна. Поэтому материал является анизотропны м, т. е. физико-механические свойства древесины зависят от того, прилагается нагрузка к детали вдоль или поперек волокон. Древесина хорошо сопротивляется изгибу, сжатию и растяжению вдоль волокон, но разрушается уже при нагрузке, в 5—10 раз более низкой, если усилия прилагаются поперек волокон. Прочность зависит от породы древесины, ее влажности и даже условий, в которых дерево выросло. Конструируя корпус, судостроитель должен так расположить в нем детали, чтобы они были ориентированы волокнами по направлению действующих нагрузок, кроме того — учесть низкую прочность древесины на смятие и срез поперек волокон в соединениях этих деталей.

Особые заботы судостроителям доставляет влажность древесины, которая измеряется в процентах содержания воды по отношению к общей массе детали или заготовки. В растущем дереве клетки образуют капиллярные каналы, по которым живительная влага пронизывает весь ствол, поднимаясь до кроны. В свежесрубленном дереве содержится до 24% и более влаги, а для постройки корпусов можно использовать воздушно-сухой материал с влажностью не выше 12—15%. Свойства древесины — ее плотность, объем, прочность — в большой степени зависят от влажности. Например, при снижении влажности с 24% всего на 1 % прочность на изгиб повышается на 5%, на сжатие—на 6%, на сдвиг и ударный изгиб—на 3%. Поэтому судостроители стараются хорошо защитить наружную обшивку и детали набора корпуса от влаги, а самые легкие гоночные суда рекомендуют держать на берегу, спуская на воду лишь для тренировок и соревнований.

С колебанием влажности связано и другое неприятное явление — усушка, разбухание, коробление и образование трещин в деревянных деталях. При впитывании влаги размеры корпусных деталей увеличиваются, изменяется их форма. Меньше всего увеличивается длина — в направлении вдоль волокон — всего на 0, 1— 0. 3% (1—3 мм на метр длины). В поперечном сечении в радиальном направлении (по отношению к годовым кольцам) размеры увеличиваются на 3—5%, в тангенциальном ; направлении (по касательной к годовым кольцам) — разбухание достигает максимума до 10% (или 10 мм при ширине обшивочной доски 100 мм!). В корпусе судна разбухание и усушка деталей приводят к образованию неровностей на наружной поверхности обшивки, появлению зазоров, трещин, нарушению водонепроницаемости, обрыву и ослаблению соединений с металлическим крепежом.

Органическое происхождение древесины, ее способность поглощать влагу вместе с кислородом воздуха обуславливают развитие при определенных условиях загнивания и поражения грибками; в странах с теплым климатом бичом деревянного судна становятся морские черви и древоточцы.

Всех этих недостатков лишены корпуса из стеклопластика и металла. Хотя по опыту многолетней эксплуатации нельзя утверждать, что стеклопластик не поглощает воду, и что его прочность и долговечность не зависят от влажности, а алюминиевый корпус не разрушается коррозией. Но происходящие здесь процессы менее интенсивны и нейтрализуются применением соответствующей защиты.

Словом, ситуация в малом судостроении в последние десятилетия складывалась таким образом, что возможности древесины считались практически исчерпанными и она должна была уступить свои позиции новым материалам. Читать далее

10.07.2011 Posted by | дерево, композитные конструкции, стеклопластик, технология, фанера | , , , , , , , , , , , , , , , , , , , , , , , , , | Оставьте комментарий

profiinvestor.com

Инвестиции и заработок в интернет

SunKissed

мое вдохновение

The WordPress.com Blog

The latest news on WordPress.com and the WordPress community.

Домашняя яхт-верфь.

Сайт создан для тех, кто мечтает построить яхту своими руками - яхту своей мечты...

Twenty Fourteen

A beautiful magazine theme