Домашняя яхт-верфь.

Сайт создан для тех, кто мечтает построить яхту своими руками — яхту своей мечты…

Во что одевается яхта?

Перед любым яхтсменом, собирающимся заказать новый парус для своей яхты, встает вопрос выбора материала для его изготовления. Материалов сегодня производится великое множество, они могут сильно отличаться друг от друга внешним видом, конструкцией, типом волокон, назначением, ну и ценой, разумеется. Разбираться в них человеку, не имеющему в числе своих увлечений химию, сопромат и изготовление парусных тканей, откровенно скучно и неинтересно. Но при покупке любой вещи, стоящей заметных денег, необходимо предварительно изучить требуемые характеристики, возможности, особенности и т.п. Точно также имеет смысл поступать и при заказе парусов.

Часто пытаются воспользоваться советами парусного мастера, льстя его опыту и компетентности, но мастера бывают разные и могут посоветовать совсем не то, что вы бы выбрали сами, зная о парусных материалах гораздо больше. Поэтому попытаюсь ликвидировать неосведомленность в этом деле любителей, употребляя минимум специальных терминов и заграничных слов и не удивляя своим знанием химического состава пропиток тканей и их фирменных названий, а также расшифровки аббревиатур серий парусных материалов разных компаний, их производящих.

Прежде всего перед выбором ткани для паруса важно определиться с тем, собственно, какой парус вам нужен и для чего. Идем от простого. Паруса бывают круизные — для прогулок и путешествий — и гоночные — для участия судна в парусных гонках. Универсального выбора здесь нет. Круизные паруса не годятся для гонок, так как изготовлены как неприхотливые и универсальные для всего спектра ветровых нагрузок и предназначены в основном для использования с закрутками. Поэтому они обычно мягкие, тяжелые, но достаточно долговечные.

Требования по строгому сохранению заданной формы к круизным парусам не очень жесткие. Гоночные же паруса конструируются, как правило, для получения максимального соотношения тяги к весу паруса при конкретных условиях гонки, определяемых силой ветра, курсовым углом, состоянием моря и даже временем суток. Поэтому каждый гоночный парус соответствует довольно узкой комбинации заданных параметров и, соответственно, не бывает универсальным. “Катание” под гоночными парусами довольно хлопотно и накладно, так как требует их постоянной смены, осторожного обращения и достаточной квалификации команды.

Во вторую очередь следует определить, на каком из двух основных типов парусных материалов вы собираетесь остановиться. На сегодня можно говорить о двух типах: тканых материалах и ламинатах.

Итак, вы определились с функцией своего паруса — например, вам нужен «круизный», т.е. который вы сможете носить, не снимая со своего рангоута, в любую погоду в течение нескольких сезонов и с которым смогут спокойно обращаться члены вашей семьи. Для небольшой яхты наиболее подходящими и дешевыми для этих целей пока остаются тканые парусные материалы. Основная масса их базируется на нитях, изготавливаемых из полиэфирного или полиамидного волокна.

Свойства получаемых тканей зависят как от типа волокна, так и от веса нитей и плотности их набивки, естественный предел которой достигнут в одинаковой степени всеми производителями. Вес нити определяется в денье (den), он равен весу в граммах 9000 пог.м. нити. Вес нити и плотность набивки определяют плотность парусной ткани, которая традиционно измеряется в парусных унциях (oz): умножив вес  в унциях на 42.83, получим вес 1 м2 ткани.

Основу тканых материалов, как явствует из их названия, составляет плотно сотканное полотно, подвергающееся впоследствии циклу различных отделок (после чего материал получается более жестким, т.е. способным сопротивляться деформации), важнейшие из которых — каландрирование ткани и ее пропитка. Каландрирование, т.е. прокатывание ткани между горячими валками, превращает круглые нити в плоские, что существенно снижает диагональную подвижность ткани, но и заметно уменьшает прочность непосредственно нитей, несколько “травмируя” их.

Окончательная, так называемая финишная, пропитка ткани различными смолами позволяет достичь меньшей растяжимости под нагрузкой во всех направлениях. Существуют всевозможные технологии пропиток смолами различного состава (чаще всего — меламиновыми) и жесткости. Поверхностная пропитка жесткими смолами обеспечивает максимальную жесткость тканых материалов, это самые дорогие парусные ткани, они применяются для гоночных парусов, которые некоторое время неплохо держат форму, но благополучно “умирают”, после того как разрушается и осыпается эта замечательная пропитка.

Более эластичные смолы лучше впитываются волокна ми ткани, лучше удерживаются в структуре тканой основы, пропитки эти в меньшей степени боятся неизбежных изломов ткани и динамических ударов, но, соответственно, не позволяют получить характеристики, как у материалов с жесткой пропиткой. Для гоночных парусов такие ткани не применяются. В целом работа ет принцип: чем материал жестче — тем парус эффективней, но менее долговечней и, наоборот, чем мягче — тем долговечней, но менее эффективен.

В тканях, предназначенных для парусов горизонтального кроя с большим удлинением (соотношение длины передней шкаторины к нижней), нити утка (поперечные) в несколько раз толще нитей основы (продольных), поскольку в таких парусах основные растягивающие усилия идут по задней шкаторине. Подобные ткани имеют высокое сопротивление растяжению по утку, но не годятся для парусов с малым удлинением, где шире диапазон нагрузок, расположенных по поверхности паруса по отношению к задней шкаторине.

Для таких парусов выпускаются более сбалансированные ткани, имеющие лучшую диагональ — они универсальнее, но тяжелее из — за более слабого утка. Существуют также так называемые ткани с “сильной” основой, нити которой толще нитей утка, но, поскольку соткать ткань, предварительно сильно натянув эти самые нити, невозможно технически, то особо сильной основа в этих тканях и не получается. Эти материалы обрабатывают мягкой пропиткой и применяют для круизных радиальных парусов. Для изготовления гоночных же радиальных парусов из тканых материалов подходят сбалансированные жесткие и армированные ткани.

Все описанные выше ткани делают чаще всего из обычных полиэфирных нитей или из более дорогой их модификации — пентекса, а также спектры. Для спинакерных материалов традиционно применяют полиамидные волокна, но в последнее время все чаще и чаще полиэфирные. Основными недостатками парусов из большинства полиэфирных материалов, которые у нас принято называть дакроном, являются большой вес паруса при относительно невысокой жесткости, неспособность материала достаточно противостоять диагональным нагрузкам, возникающим в парусе и, как следствие, гарантированная потеря заданной формы, появление складок, а также значительное увеличение веса при намокании.

И главный недостаток дакрона: его непригодность для изготовления гоночных радиальных парусов высокого качества. Исключение здесь — серии “Pinstripe” и “Spectrastripe” американской фирмы “Challenge Sailcloth”. “Pinstripe” — это дакрон, армированный по основе волокнами “Gold Kevlar 29”, такая комбинация позволила получить очень жесткую гоночную ткань для радиального кроя, которая при очень малом весе имеет параметры, сравнимые уже с параметрами даже арамидных ламинатов.

К примеру, из ткани этой марки весом всего 3.4 парусные  унции (это 145 г/м2   — из дакрона такого веса шьют паруса для “Оптимиста”) можно смело шить геную для тяжелой погоды и грот на “четвертак” (дакроновые паруса получатся в два раза тяжелее), а обойдутся такие паруса значительно дешевле ламинатных. Однако, если у вас парусник длиной более 14 м, то можно с успехом присопоставимой стоимости парусного материала использовать круизные ламинаты. Что же такое ламинатные парусные материалы?

Развитие химии и появление новых технологий позволили сделать качественный скачок и в области изготовления парусов. Применение ламинатов для основных парусов радикально решает трудности получения их желаемой формы. Все ламинаты предназначены только для радиального раскроя парусов. Они представляют собой многослойную конструкцию, состоящую из различных волокон, расположенных в нескольких направлениях и выполняющих разные функции, ламинированных с двух сторон пленкой (третий слой пленки может быть также в середине).

На некоторых сортах ламинатов снаружи может быть приклеена (с одной или с двух сторон) тонкая тканая таффета, увеличивающая живучесть паруса. Редко расположенные армирующие нити или плоские жгуты из самых разнообразных высокопрочных волокон — это могут быть пентекс, вектран, кевлар, технора, спектра, дайнима, туарон и углеволокно — позволяют существенно снизить вес паруса при очень высокой прочности и упругости материала.

Плоские жгуты более жесткие, крученые нити — эластичнее, подбор их сочетаний позволяет получать парус с требуемыми характеристиками. Материалы для ламинирующей пленки и таффеты (тканая подложка, повышающая флаттерную устойчивость материала) могут иметь также разный химический состав. Количество слоев такого “сэндвича” обычно от трех до шести (раньше встречались и двух и семислойные материалы).

Ламинаты бывают круизные и гоночные. Простейший ламинат состоит из пленки с наклеенным на нее тонким дакроном, стандартный гоночный — из мощных продольных волокон, воспринимающих основные нагрузки, тонких поперечных связей, предотвращающих разрушение материала от динамических и механических поперечных нагрузок, возникающих в парусе, и Х — направленных (под углом от 6 до 45° к продольным волокнам) нитей, воспринимающих диагональные нагрузки.

Надо отметить здесь, что совершенно недавно фирма “Contender Sailcloth” создала оригинальную разновидность такого гоночного ламината, назвав ее “Multi Axial Fabric”, или “MAXX”, этот новый материал был представлен на выставке “Hanseboot 2004”. Отличительной особенностью ламинатов этой серии является асимметричное расположение нитей, воспринимающих диагональные нагрузки: нет больше Х — образного расположения.

Нити, воспринимающие диагональную нагрузку, располагаются здесь в двух направлениях под довольно острыми углами к продольным жгутам, идя примерно параллельно задней шкаторине, т.е. по направлению основных растягивающих усилий в парусах большого удлинения. (Специалисты и парусные мастера высоко оценили новинку — Прим. ред.)

К недостаткам основного ассортимента предлагаемых гоночных ламинатов можно отнести подверженность потери прочности большинства высокомодульных волокон вследствие действия ультрафиолета и изломов нитей. (Полиэфирное волокно также боится ультрафиолета, только в меньшей степени). В некоторых материалах воздействие солнца на волокно снижается окрашиванием ламинирующей пленки или нанесением защитного покрытия. Замечательным достижением здесь, безусловно, является уже проверенная временем “Carbon” — серия, которую фирма “Dimension Polyant” с успехом серийно производит уже около четырех лет.

Компании  не только удалось создать великолепный материал, не боящийся ультрафиолета, влаги и изломов из самого прочного, но и самого проблемного углеволокна, применив до сих пор невиданную технологию, а также сделать его конкурентоспособным по цене, несмотря на очень высокую стоимость сырья. На сегодняшний день этот материал лишь на 5–9% дороже аналогичных по характеристикам ламинатов из арамидов, но в связи с постоянным увеличением объема продаж этой серии, планируются запуски новых производственных линий и, естественно, снижение цен на эти материалы.

Суть ноу — хау изготовления этих ламинатов в том, что армирующие ленты из углеволокна уложены в тоннели между ламинирующей пленкой, приклеены к их стенкам, но не пропитаны связующим, отрицательно влияющим на прочность угля. Опыт показал, что паруса из этих материалов гораздо лучше держат форму и значительно долговечнее любых других.

Но прогресс есть прогресс. Сравнительно недавно, в конце прошлого века, специалисты американской фирмы “Quantum” изобрели нетканый материал для гоночных парусов, соответствующий по качеству основным ламинатам, но не имеющий присущих им недостатков — ломкости и плохой устойчивости к ультрафиолету. Называется такой материал “Cuben Fiber”, основа в котором это свободно ориентированные в трех плоскостях тончайшие полиэфирные волокна, так называемая “аморфная матрица”, имеющая одинаковые нагрузочные характеристики во всех направлениях, напоминающая по структуре вату и несущая функцию ламинирующей пленки.

Основное преимущество перед последней — значительно меньший вес этой основы, высокая прочность и эластичность. На нее наносят усиливающие армирующие нити, связующую смолу, все это спекается и получается очень легкий и устойчивый парусный материал. Существенные недостаток — технологическая ограниченность размеров парусных отрезов, так как эти материалы производят методом вакуумного прессования на специальной панели ограниченного размера и, следовательно, изготовить их в виде рулона невозможно.

При заказе нового паруса нашего человека прежде всего интересует практическая сторона вопроса — насколько живуч тот или иной парусный материал. С уверенностью можно сказать, что дольше всего прослужит парус из мягкой дешевой ткани, аэродинамическая форма которого, правда, угловатая, но это его единственный недостаток.

Неплохо также сохраняются паруса из любых материалов, если их вообще не вынимать из мешка. Если же вы хотите плыть быстро, то придется раскошелиться. Тут я не скажу ничего нового: чем лучше — тем дороже, как и все в этом мире. Существенное значение для гоночного паруса имеет его вес, и дело не столько собственно в самом весе: легкий парус более упруг и эластичен, а, значит, он будет правильно работать, и, чем больше диапазон его работы, тем быстрее пойдет яхта — но тем меньше времени  этот парус будет считаться хорошим гоночным и сохранять заданную мастером форму.

Например, просчитанный ресурс «кубковых» парусов — всего 20–30 часов. Ну никому же, в конце концов, не придет в голову ездить на “Формуле1” медленно для того, чтобы резины хватило на несколько лет? Если вы в основном планируете совершать прогулки или крейсерские переходы, где выжимание максимальной скорости неактуально, то гораздо важнее сэкономить на парусах, чтобы разницу с пользой потратить для этих самых прогулок. Проще говоря, нужно подобрать недорогой материал с достаточным запасом прочности для яхты вашего размера и дальности плавания. Надеюсь, что данная статья поможет вам понять, какой на сегодня существует выбор.

Сергей Коновалов.

Источник:  «Катера и Яхты» ,  №193.

18.09.2011 Posted by | паруса | , , , , , , , , , , , , , | Оставьте комментарий

Что такое углепластик?

За два последних десятилетия в ракетно-космической технике, в самолетостроении и судостроении, при создании ряда уникальных машин, таких, как гоночные автомобили, все шире применяются новые волокнистые конструкционные материалы, подобные стеклопластикам (СП), но во мнoгoм превосходящие их по важнейшим характеристикам.Образуются такие мaтepиалы армированием матрицы  металлическими или неметаллическими высокопрочными и высокомодульными волокнами. К мeталлическим волокнам относятся волокна (нити) из бора, нержавеющей стали и различных жаропрочных сплавов, а к неметаллическим — волокна углерода, графита, кремнеземные и кварцевые нити и др. Композиции, apмиpoванныe неметаллическими волокнами, получили общее название —  полимерные композиционные материалы (ПКМ).

Сами матрицы также мoгут быть как металлическими (чаще вceгo — из алюминия), так и неметаллическими —  полимерными (из синтетических смол). Mеталлические матрицы — пластичны, неметаллические —  нe пластичны, т. е. не имеют пластических деформаций под нагрузкой вплоть до разрушения.

В судостроении из всех новых полимерных композиционных материалов наибольшее pаспpoстранение получили  углепластики (УП), т. е. композиты с непластичными матрицами на основе синтетических смол, aрмированными углеродным  волокнами (УВ). В ряде случаев УВ используются в сочетании со стеклянными волокнами (такой материал называется углестеклопластиком)  или с органическими волокнами (углеорганопластик).

УГЛЕРОДНЫЙ  АРМИРУЮЩИЙ  НАПОЛНИТЕЛЬ. Углepoдное волокно на 85 — 99 % состоит нз углерода. Получают углеродные волокна термической обработкой таких органических волокон, как вискозное кордное волокно, полиакрилонитрильное волокно (ПАН — волокно), нефтяной пек; реже производят УВ из кaмeннoyгoльныx пеков, лигнина, феноло — формальдегидных волокон. Волокна, предназначенные для переработки на УВ, не должны плавиться при термической обработке, должны давать высокое коксовое число, т. е. показатель (% по массе), характеризующий выход  нелетучего остатка (углерода) при нагревании.

В зависимости от температуры обработки и содержания углерода углеволокно делится на частично карбонизированное  (до 9000С; 85 — 90 % С), карбонизированное   (900 — 15000С; 95 — 99 % С) и графитизированное  (1500 — 3000ОС; более  99 % С). Читать далее

14.08.2011 Posted by | композитные конструкции, технология, углепластик | , , , , , , , , , , , , , | 2 комментария

Современный яхтенный парус.

В течение многих веков над совершенствованием паруса трудились поколения замечательных мастеров, выдающихся мореплавателей, а в последнее время и яхтсменов — гонщиков. Их усилиями парус, казалось бы, достиг вершины cвoeгo развития, однако сейчас мы являемся свидетелями настоящей революции в парусном деле. Появляются новые типы парусов, совepшенствуются методы их раскроя и шитья, создаются новые материалы для парусов. Многие из этих новшеств являются данью рекламе и вызваны элементарным стремлением ведущих фирм Запада завоевать рынок и привлечь новых покупателей. Однако проявились и такие тeндeнции, которые позволяют говорить о качественно новом этапе развития парусов для спортивных яхт.

Бурное развитие международных парусных гонок, в первую очередь, соревнований крейсерско — гоночных яхт, в немалой степени способствовало этому явлению. Гонки на «Кубок Америки», «Адмиральский Кубок», «Однотонный Кубок» и другие соревнования уровневых  классов, кpyгoсветные и трансокеанские гонки явились великолепной лабораторией, где лучшие гонщики на практике испытывали последние творения ведущих парусных мастеров и производителей парусных материалов. Именно при подготовке к «Кубку Америки 77» впервые появились экспериментальные паруса из полиэстерной (в нашей стране она называется лавсановой) пленки — м а й л а р а, обладающей высокой прочностью.

Главным ее достоинством является то, что она в одинаковой степени противостоит растяжению в любом направлении, в отличие от традиционных тканей, которые сильно растягиваются по диагонали относительно нитей основы и утка. Однако первые опыты с майларом оказались неудачными, так как пленка была очень хрупкой и легко рвалась. Маленькие проколы иглой быстро превращались под нагрузкой в разрывы от шкаторины к шкаторине. Пленка также сильно разрушалась под воздействием ультрафиолетовых лучей.

Следующее поколение материалов на основе майлара представляло собой ламинат, coстоящий из относительно легкой ткани (нейлон, тонкий дакрон) и полиэстерной пленки. В такой композиции ткань является армирующим мaтeриалом, существенно увеличивающим прочность на разрыв и уменьшающим хрупкость парусов. Полученный таким образом материал имеет одну гладкую сторону (со стороны пленки) и одну шероховатую (со стороны ткани). Попытки получить материалы, покрытые пленкой с двух сторон, успеха не имели, так как при двустороннем покрытии в материале нeизбежно возникали чрезмерные внутренние напряжения, которые приводили к eгo расслоению в зоне максимальных нагрузок.

В результате упорной работы парусных мacтеров, разработчиков и производителей мaтeриалов, удалось получить легкую, прочную и удобную в работе ткань. Современные паруса почти в два раза легче тех, которые применялись в аналогичных условиях вceгo 8 — 10 лет назад. В нашей стране в НИИ пластмасс получены и испытаны опытные партии композитных материалов типа майлара из лавсановой пленки на нейлоновой основе. Образец такой ткани весом 160 г/м2 на испытаниях показал такую же прочность и деформативные свойства, что и образец из дакрона весом 240 г/м2. Aнaлогичными свойствами обладают и ламинаты, производство которых налажено в Польской Народной Республике. Наши яхтсмены уже в ближайшие годы cмoгут сменить паруса из лавсана и дакрона на майларовые. Читать далее

12.08.2011 Posted by | Аэродинамика, паруса | , , , , , , , , , , , , , , , , , , , , , , , , | Оставьте комментарий

Старый материал — новая технология постройки корпусов яхт.


Д. Курбатов (По материалам зарубежной печати)

Дерево знакомое. С древесиной— замечательным строительным материалом, дарованным человеку природой, наше знакомство начинается с детства. С того момента, как у нас появляется потребность что-нибудь мастерить. Легкость и прочность, податливость хорошо заточенному резцу, чистота в обработке, привлекательная текстура, волнующий запах стружки — все это заставляет отдавать предпочтение древесине в ряду других доступных материалов.

Не возникали сомнения в выборе древесины и у строителей лодок, катеров и яхт, пока не появились легкие алюминиевые сплавы и стеклопластики. Они смогли конкурировать с деревом по такому показателю, как удельная прочность, т. е. отношение разрушающей нагрузки (или предела текучести) к плотности материала. А значит, поя вилась возможность строить прочные и легкие корпуса малых судов, не уступающие деревянным по ходовым качествам, мореходности и грузоподъемности. В отличие от деревянного корпуса, который состоит из сотен отдельных деталей, суда стали собирать из двух-трех крупных монолитных объемных стеклопластиковых деталей; значительно сократилась трудоемкость изготовления корпусов.

Достоинством пластмассового судостроения является также практически безотходная технология (при правильной организации производства). Деревянный корпус строится только из пиломатериалов самого высокого — отборного сорта; даже при использовании клееных соединений 30—35% пиломатериалов идут в отходы, вместе с которыми удаляются пороки древесины — сучки, косослой, трещины и т. п.

Недостатки дерева как судостроительного материала обусловлены его природным, органическим происхождением. Древесина состоит из множества клеток, образующих вытянутые вдоль ствола волокна. Поэтому материал является анизотропны м, т. е. физико-механические свойства древесины зависят от того, прилагается нагрузка к детали вдоль или поперек волокон. Древесина хорошо сопротивляется изгибу, сжатию и растяжению вдоль волокон, но разрушается уже при нагрузке, в 5—10 раз более низкой, если усилия прилагаются поперек волокон. Прочность зависит от породы древесины, ее влажности и даже условий, в которых дерево выросло. Конструируя корпус, судостроитель должен так расположить в нем детали, чтобы они были ориентированы волокнами по направлению действующих нагрузок, кроме того — учесть низкую прочность древесины на смятие и срез поперек волокон в соединениях этих деталей.

Особые заботы судостроителям доставляет влажность древесины, которая измеряется в процентах содержания воды по отношению к общей массе детали или заготовки. В растущем дереве клетки образуют капиллярные каналы, по которым живительная влага пронизывает весь ствол, поднимаясь до кроны. В свежесрубленном дереве содержится до 24% и более влаги, а для постройки корпусов можно использовать воздушно-сухой материал с влажностью не выше 12—15%. Свойства древесины — ее плотность, объем, прочность — в большой степени зависят от влажности. Например, при снижении влажности с 24% всего на 1 % прочность на изгиб повышается на 5%, на сжатие—на 6%, на сдвиг и ударный изгиб—на 3%. Поэтому судостроители стараются хорошо защитить наружную обшивку и детали набора корпуса от влаги, а самые легкие гоночные суда рекомендуют держать на берегу, спуская на воду лишь для тренировок и соревнований.

С колебанием влажности связано и другое неприятное явление — усушка, разбухание, коробление и образование трещин в деревянных деталях. При впитывании влаги размеры корпусных деталей увеличиваются, изменяется их форма. Меньше всего увеличивается длина — в направлении вдоль волокон — всего на 0, 1— 0. 3% (1—3 мм на метр длины). В поперечном сечении в радиальном направлении (по отношению к годовым кольцам) размеры увеличиваются на 3—5%, в тангенциальном ; направлении (по касательной к годовым кольцам) — разбухание достигает максимума до 10% (или 10 мм при ширине обшивочной доски 100 мм!). В корпусе судна разбухание и усушка деталей приводят к образованию неровностей на наружной поверхности обшивки, появлению зазоров, трещин, нарушению водонепроницаемости, обрыву и ослаблению соединений с металлическим крепежом.

Органическое происхождение древесины, ее способность поглощать влагу вместе с кислородом воздуха обуславливают развитие при определенных условиях загнивания и поражения грибками; в странах с теплым климатом бичом деревянного судна становятся морские черви и древоточцы.

Всех этих недостатков лишены корпуса из стеклопластика и металла. Хотя по опыту многолетней эксплуатации нельзя утверждать, что стеклопластик не поглощает воду, и что его прочность и долговечность не зависят от влажности, а алюминиевый корпус не разрушается коррозией. Но происходящие здесь процессы менее интенсивны и нейтрализуются применением соответствующей защиты.

Словом, ситуация в малом судостроении в последние десятилетия складывалась таким образом, что возможности древесины считались практически исчерпанными и она должна была уступить свои позиции новым материалам. Читать далее

10.07.2011 Posted by | дерево, композитные конструкции, стеклопластик, технология, фанера | , , , , , , , , , , , , , , , , , , , , , , , , , | Оставьте комментарий

   

profiinvestor.com

Инвестиции и заработок в интернет

SunKissed

мое вдохновение

The WordPress.com Blog

The latest news on WordPress.com and the WordPress community.

Домашняя яхт-верфь.

Сайт создан для тех, кто мечтает построить яхту своими руками - яхту своей мечты...

Twenty Fourteen

A beautiful magazine theme